Analog Engineer's Pocket Reference
Art Kay and Tim Green, Editors

Download e-book at www.ti.com/analogrefguide
Message from the editors:

This pocket reference is intended as a valuable quick guide for often used board- and system-level design formulae. This collection of formulae is based on a combined 50 years of analog board- and system-level expertise. Much of the material herein was referred to over the years via a folder stuffed full of printouts. Those worn pages have been organized and the information is now available via this guide in a bound and hard-to-lose format!

Here is a brief overview of the key areas included:

- Key constants and conversions
- Discrete components
- AC and DC analog equations
- Op amp basic configurations
- OP amp bandwidth and stability
- Overview of sensors
- PCB trace R, L, C
- Wire L, R, C
- Binary, hex and decimal formats
- A/D and D/A conversions

We hope you find this collection of formulae as useful as we have. Please send any comments and/or ideas you have for the next edition of the Analog Engineer’s Pocket Reference to artkay_timgreen@list.ti.com

Additional resources to explore:

TI Precision Labs
ti.com/precisionlabs
- On-demand courses and tutorials ranging from introductory to advanced concepts that focus on application-specific problem solving
- Hands-on labs and evaluation modules (EVM) available
 - TIPL Op Amps experimentation platform, ti.com/TIPL-amp-evm
 - TIPL SAR ADC experimentation platform, ti.com/TIPL-adc-evm

Analog Engineer’s Circuit Cookbooks
ti.com/circuitcookbooks
- Simplify and speed system design with comprehensive library of sub-circuit
- Step-by-step instructions, basic formulas, schematic diagrams and SPICE simulations

The Signal e-book
ti.com/signalbook
- Short, bite-sized lessons on on op-amp design topics, such as offset

Analog Wire Blog
ti.com/analogwire
- Technical blogs written by analog experts that include tips, tricks and design techniques

TI Designs
ti.com/tidesigns
- Ready-to-use reference designs with theory, calculations, simulations schematics, PCB files and bench test results

DIY Amplifier Circuit Evaluation Module (DIYAMP-EVM)
ti.com/DIYAMP-EVM
- Single-channel circuit evaluation module providing SC70, SOT23 and SOIC package options in 12 popular amplifier configurations

Dual-Channel DIY Amplifier Circuit Evaluation Module (DUAL-DIYAMP-EVM)
ti.com/dual-diyamp-evm
- Dual-channel circuit evaluation module in an SOIC-8 package with 10 popular amplifier configurations

TINA-Ti simulation software
ti.com/tool/tina-ti
- Complete SPICE simulator for DC, AC, transient and noise analysis
- Includes schematic entry and post-processor for waveform math

Analog Engineer’s Calculator
ti.com/analogcalc
- ADC and amplifier design tools, noise and stability analysis, PCB and sensor tools

TI E2E™ Community
ti.com/e2e
- Support forums for all TI products
Conversions

- Standard decimal prefixes
- Metric conversions
- Temperature scale conversions
- Error conversions (ppm and percentage)
Table 1: Physical constants

<table>
<thead>
<tr>
<th>Constant</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed of light in a vacuum</td>
<td>(c)</td>
<td>(2.997,924,58 \times 10^8)</td>
<td>m/s</td>
</tr>
<tr>
<td>Permittivity of vacuum</td>
<td>(\varepsilon_0)</td>
<td>(8.854,187,817,620 \times 10^{-12})</td>
<td>F/m</td>
</tr>
<tr>
<td>Permeability of free space</td>
<td>(\mu_0)</td>
<td>(1.256,637,061,4 \times 10^{-6})</td>
<td>H/m</td>
</tr>
<tr>
<td>Planck’s constant</td>
<td>(h)</td>
<td>(6.626,069,57 \times 10^{-34})</td>
<td>J(\cdot)s</td>
</tr>
<tr>
<td>Boltzmann’s constant</td>
<td>(k)</td>
<td>(1.380,648,8 \times 10^{-23})</td>
<td>J/K</td>
</tr>
<tr>
<td>Faraday’s constant</td>
<td>(F)</td>
<td>(9.648,533,99 \times 10^4)</td>
<td>C/mol</td>
</tr>
<tr>
<td>Avogadro’s constant</td>
<td>(N_A)</td>
<td>(6.022,141,29 \times 10^{23})</td>
<td>1/mol</td>
</tr>
<tr>
<td>Unified atomic mass unit</td>
<td>(m_u)</td>
<td>(1.660,538,921 \times 10^{-27})</td>
<td>kg</td>
</tr>
<tr>
<td>Electronic charge</td>
<td>(q)</td>
<td>(1.602,176,565 \times 10^{-19})</td>
<td>C</td>
</tr>
<tr>
<td>Rest mass of electron</td>
<td>(m_e)</td>
<td>(9.109,382,15 \times 10^{-31})</td>
<td>kg</td>
</tr>
<tr>
<td>Mass of proton</td>
<td>(m_p)</td>
<td>(1.672,621,777 \times 10^{-27})</td>
<td>kg</td>
</tr>
<tr>
<td>Gravitational constant</td>
<td>(G)</td>
<td>(6.673,84 \times 10^{-11})</td>
<td>Nm²/kg²</td>
</tr>
<tr>
<td>Standard gravity</td>
<td>(g_\text{n})</td>
<td>9.806,65</td>
<td>m/s²</td>
</tr>
<tr>
<td>Ice point</td>
<td>(T_{\text{ice}})</td>
<td>273.15</td>
<td>K</td>
</tr>
<tr>
<td>Maximum density of water</td>
<td>(\rho)</td>
<td>(1.00 \times 10^3)</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Density of mercury (0°C)</td>
<td>(\rho_{\text{Hg}})</td>
<td>(1.362,8 \times 10^4)</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Gas constant</td>
<td>(R)</td>
<td>(8.314,462,1)</td>
<td>J/(K•mol)</td>
</tr>
<tr>
<td>Speed of sound in air (at 0°C)</td>
<td>(c_{\text{air}})</td>
<td>(3.312 \times 10^2)</td>
<td>m/s</td>
</tr>
</tbody>
</table>

Table 2: Standard decimal prefixes

<table>
<thead>
<tr>
<th>Multiplier</th>
<th>Prefix</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{12})</td>
<td>tera</td>
<td>T</td>
</tr>
<tr>
<td>(10^9)</td>
<td>giga</td>
<td>G</td>
</tr>
<tr>
<td>(10^6)</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>(10^3)</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>(10^{-3})</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>(10^{-6})</td>
<td>micro</td>
<td>µ</td>
</tr>
<tr>
<td>(10^{-9})</td>
<td>nano</td>
<td>n</td>
</tr>
<tr>
<td>(10^{-12})</td>
<td>pico</td>
<td>p</td>
</tr>
<tr>
<td>(10^{-15})</td>
<td>femto</td>
<td>f</td>
</tr>
<tr>
<td>(10^{-18})</td>
<td>atto</td>
<td>a</td>
</tr>
</tbody>
</table>
Table 3: Imperial to metric conversions

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
<th>Equivalent</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>inches</td>
<td>in</td>
<td>25.4 mm/in</td>
<td>millimeter</td>
<td>mm</td>
</tr>
<tr>
<td>mil</td>
<td>mil</td>
<td>0.0254 mm/mil</td>
<td>millimeter</td>
<td>mm</td>
</tr>
<tr>
<td>feet</td>
<td>ft</td>
<td>0.3048 m/ft</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>yards</td>
<td>yd</td>
<td>0.9144 m/yd</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>miles</td>
<td>mi</td>
<td>1.6093 km/mi</td>
<td>kilometers</td>
<td>km</td>
</tr>
<tr>
<td>circular mil</td>
<td>cir mil</td>
<td>5.067x10^-4 mm^2/cir mil</td>
<td>square millimeters</td>
<td>mm^2</td>
</tr>
</tbody>
</table>
| square yards | yd^2 | 0.8361 m^2 | square meters | m^2 |}

Table 4: Metric to imperial conversions

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
<th>Conversion</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>millimeter</td>
<td>mm</td>
<td>0.0394 in/mm</td>
<td>inch</td>
<td>in</td>
</tr>
<tr>
<td>millimeter</td>
<td>mm</td>
<td>39.4 mil/mm</td>
<td>mil</td>
<td>mil</td>
</tr>
<tr>
<td>meters</td>
<td>m</td>
<td>3.2808 ft/m</td>
<td>feet</td>
<td>ft</td>
</tr>
<tr>
<td>meters</td>
<td>m</td>
<td>1.0936 yd/m</td>
<td>yard</td>
<td>yd</td>
</tr>
<tr>
<td>kilometers</td>
<td>km</td>
<td>0.6214 mi/km</td>
<td>miles</td>
<td>mi</td>
</tr>
<tr>
<td>square millimeters</td>
<td>mm^2</td>
<td>1974 cir mil/mm^2</td>
<td>circular mil</td>
<td>cir mil</td>
</tr>
<tr>
<td>square meters</td>
<td>m^2</td>
<td>1.1960 yd^2/m^2</td>
<td>square yards</td>
<td>yd^2</td>
</tr>
<tr>
<td>liters</td>
<td>L</td>
<td>1.7600 pt/L</td>
<td>pints</td>
<td>pt</td>
</tr>
<tr>
<td>grams</td>
<td>g</td>
<td>0.0353 oz/g</td>
<td>ounces</td>
<td>oz</td>
</tr>
<tr>
<td>kilograms</td>
<td>kg</td>
<td>2.2046 lb/kg</td>
<td>pounds</td>
<td>lb</td>
</tr>
<tr>
<td>joules</td>
<td>J</td>
<td>0.239 cal/J</td>
<td>calories</td>
<td>cal</td>
</tr>
<tr>
<td>watts</td>
<td>W</td>
<td>1.341x10^-3 hp/W</td>
<td>horsepower</td>
<td>hp</td>
</tr>
</tbody>
</table>

Example

Convert 10 mm to mil.

Answer

\[
10 \text{ mm} \times \frac{39.4 \text{ mil}}{\text{mm}} = 394 \text{ mil}
\]
Table 5: Temperature conversions

- °C = \(\frac{5}{9} (°F - 32) \) Fahrenheit to Celsius
- °F = \(\frac{9}{5} (°C) + 32 \) Celsius to Fahrenheit
- K = °C + 273.15 Celsius to Kelvin
- °C = K - 273.15 Kelvin to Celsius

Table 6: Error conversions

- Error(%) = \(\frac{\text{Measured} - \text{Ideal}}{\text{Ideal}} \times 100 \) Error in measured value
- Error(% FSR) = \(\frac{\text{Measured} - \text{Ideal}}{\text{Full-scale range}} \times 100 \) Error in percent of full-scale range
- \(% = \frac{\text{ppm}}{10^6} \times 100 \) Part per million to percent
- \(m\% = \frac{\text{ppm}}{10^6} \times 100 \times 1000 \) Part per million to milli-percent
- \(\text{ppm} = \% \times 10^4 \) Percent to part per million
- \(\text{ppm} = m\% \times 10 \) Milli-percent to part per million

Example
Compute the error for a measured value of 0.12V when the ideal value is 0.1V and the range is 5V.

Answer
\[
\text{Error(%) = } \frac{0.12 \text{V} - 0.1 \text{V}}{0.1 \text{V}} \times 100 = 20\%
\]
\[
\text{Error(%) FSR = } \frac{0.12 \text{V} - 0.1 \text{V}}{5 \text{V}} \times 100 = 0.4\%
\]

Example
Convert 10 ppm to percent and milli-percent.

Answer
\[
\frac{10 \text{ ppm}}{10^6} \times 100 = 0.001\%
\]
\[
\frac{10 \text{ ppm}}{10^6} \times 100 \times 1000 = 1 \text{ m\%}
\]
Table 7: Conversion between codes, mV, %, and ppm

<table>
<thead>
<tr>
<th>Codes</th>
<th>mV</th>
<th>%</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codes</td>
<td>Codes $\cdot \left(\frac{V_{FSR}}{2^N} \right) \cdot 1000$</td>
<td>Codes $\cdot \left(\frac{1}{2^N} \right) \cdot 100$</td>
<td>Codes $\cdot \left(\frac{1}{2^N} \right) \cdot 10^6$</td>
</tr>
<tr>
<td>mV</td>
<td>$mV \cdot \left(\frac{2^N}{V_{FSR} \cdot 1000} \right)$</td>
<td>$mV \cdot \left(\frac{1}{V_{FSR} \cdot 1000} \right) \cdot 100$</td>
<td>$mV \cdot \left(\frac{1}{V_{FSR} \cdot 1000} \right) \cdot 10^6$</td>
</tr>
<tr>
<td>%</td>
<td>$% \cdot \left(\frac{2^N}{100} \right)$</td>
<td>$% \cdot \left(\frac{V_{FSR} \cdot 1000}{100} \right)$</td>
<td>$% \cdot \left(\frac{10^6}{100} \right)$</td>
</tr>
<tr>
<td>ppm</td>
<td>$ppm \cdot \left(\frac{2^N}{10^6} \right)$</td>
<td>$ppm \cdot \left(\frac{V_{FSR} \cdot 1000}{10^6} \right)$</td>
<td>$ppm \cdot \left(\frac{1}{10^6} \right) \cdot 100$</td>
</tr>
</tbody>
</table>

Where

- $N = $ resolution of ADC

- $V_{FSR} = $ full scale range of ADC in voltage. Full scale range is double for a bipolar ADC compared with unipolar ADC.

- Codes, %, and ppm = the equivalent value ADC codes, percentage, and parts per million
Discrete Components

- Resistor color code
- Standard resistor values
- Capacitance specifications
- Capacitance type overview
- Standard capacitance values
- Capacitance marking and tolerance
Table 8: Resistor color code

<table>
<thead>
<tr>
<th>Color</th>
<th>Digit</th>
<th>Additional Zeros</th>
<th>Tolerance</th>
<th>Temperature Coefficient</th>
<th>Failure Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>Brown</td>
<td>1</td>
<td>1</td>
<td>1%</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Red</td>
<td>2</td>
<td>2</td>
<td>2%</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Orange</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Yellow</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Green</td>
<td>5</td>
<td>5</td>
<td>0.5%</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Blue</td>
<td>6</td>
<td>6</td>
<td>0.25%</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Violet</td>
<td>7</td>
<td>7</td>
<td>0.1%</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Grey</td>
<td>8</td>
<td>8</td>
<td>0.05%</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold</td>
<td>-na-</td>
<td>-1</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>-na-</td>
<td>-2</td>
<td>10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Band</td>
<td>-na-</td>
<td>-na-</td>
<td>20%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 band example: yellow violet orange silver indicate 4,7 and 3 zeros; i.e. a 47kΩ, 10% resistor.

Figure 1: Resistor color code examples
Table 9: Standard resistor values for the 10 to 100 decade

<table>
<thead>
<tr>
<th>0.1%</th>
<th>2%</th>
<th>0.1%</th>
<th>1%</th>
<th>2%</th>
<th>0.1%</th>
<th>1%</th>
<th>2%</th>
<th>0.1%</th>
<th>1%</th>
<th>2%</th>
<th>0.1%</th>
<th>1%</th>
<th>2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25%</td>
<td>0.25%</td>
<td>0.5%</td>
</tr>
<tr>
<td>10.0</td>
<td>10.0</td>
<td>10</td>
<td>14.7</td>
<td>14.7</td>
<td>21.5</td>
<td>21.5</td>
<td>31.6</td>
<td>31.6</td>
<td>46.4</td>
<td>46.4</td>
<td>68.1</td>
<td>68.1</td>
<td>68</td>
</tr>
<tr>
<td>10.1</td>
<td>14.9</td>
<td>21.8</td>
<td>32.0</td>
<td>47.0</td>
<td>47</td>
<td>69.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>15.0</td>
<td>15.0</td>
<td>15</td>
<td>22.1</td>
<td>22.1</td>
<td>22</td>
<td>32.4</td>
<td>32.4</td>
<td>47.5</td>
<td>47.5</td>
<td>69.8</td>
<td>69.8</td>
<td>69.8</td>
</tr>
<tr>
<td>10.4</td>
<td>15.2</td>
<td>22.3</td>
<td>32.8</td>
<td>48.1</td>
<td></td>
<td>70.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.5</td>
<td>15.4</td>
<td>15.4</td>
<td>22.6</td>
<td>22.6</td>
<td>33.2</td>
<td>33.2</td>
<td>33</td>
<td>48.7</td>
<td>48.7</td>
<td>71.5</td>
<td>71.5</td>
<td>71.5</td>
<td></td>
</tr>
<tr>
<td>10.6</td>
<td>15.6</td>
<td>22.9</td>
<td>33.6</td>
<td>49.3</td>
<td></td>
<td>72.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.7</td>
<td>15.8</td>
<td>15.8</td>
<td>23.2</td>
<td>23.2</td>
<td>34.0</td>
<td>34.0</td>
<td></td>
<td>49.9</td>
<td>49.9</td>
<td>73.2</td>
<td>73.2</td>
<td>73.2</td>
<td></td>
</tr>
<tr>
<td>10.9</td>
<td>16.0</td>
<td>16</td>
<td>23.4</td>
<td>34.4</td>
<td></td>
<td>50.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>74.1</td>
</tr>
<tr>
<td>11.0</td>
<td>16.2</td>
<td>16.2</td>
<td>23.7</td>
<td>23.7</td>
<td>34.8</td>
<td>34.8</td>
<td>51.1</td>
<td>51.1</td>
<td>51</td>
<td>75.0</td>
<td>75.0</td>
<td>75.0</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>16.4</td>
<td>16.4</td>
<td>24.0</td>
<td>24</td>
<td>35.2</td>
<td></td>
<td>51.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75.9</td>
</tr>
<tr>
<td>11.3</td>
<td>16.5</td>
<td>16.5</td>
<td>24.3</td>
<td>24.3</td>
<td></td>
<td>35.7</td>
<td>35.7</td>
<td>52.3</td>
<td>52.3</td>
<td>76.8</td>
<td>76.8</td>
<td>76.8</td>
<td></td>
</tr>
<tr>
<td>11.4</td>
<td>16.7</td>
<td>16.7</td>
<td>24.6</td>
<td></td>
<td>36.1</td>
<td></td>
<td></td>
<td>53.0</td>
<td></td>
<td>77.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td>16.9</td>
<td>16.9</td>
<td>24.9</td>
<td>24.9</td>
<td>36.5</td>
<td>36.5</td>
<td>53.6</td>
<td>53.6</td>
<td>78.7</td>
<td>78.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.7</td>
<td>17.2</td>
<td>17.2</td>
<td>25.2</td>
<td></td>
<td>37.0</td>
<td></td>
<td></td>
<td>54.2</td>
<td></td>
<td>79.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.8</td>
<td>17.4</td>
<td>17.4</td>
<td>25.5</td>
<td>25.5</td>
<td>37.4</td>
<td>37.4</td>
<td>54.9</td>
<td>54.9</td>
<td>80.6</td>
<td>80.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td>17.6</td>
<td>17.6</td>
<td>25.8</td>
<td></td>
<td>37.9</td>
<td></td>
<td></td>
<td>55.6</td>
<td></td>
<td>81.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>17.8</td>
<td>17.8</td>
<td>26.1</td>
<td>26.1</td>
<td>38.3</td>
<td>38.3</td>
<td>56.2</td>
<td>56.2</td>
<td>56</td>
<td>82.5</td>
<td>82.5</td>
<td>82.5</td>
<td></td>
</tr>
<tr>
<td>12.3</td>
<td>18.0</td>
<td>18</td>
<td>26.4</td>
<td></td>
<td>38.8</td>
<td></td>
<td></td>
<td>56.9</td>
<td></td>
<td>83.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.4</td>
<td>18.2</td>
<td>18.2</td>
<td>26.7</td>
<td>26.7</td>
<td>39.2</td>
<td>39.2</td>
<td>39</td>
<td>57.6</td>
<td>57.6</td>
<td>84.5</td>
<td>84.5</td>
<td>84.5</td>
<td></td>
</tr>
<tr>
<td>12.6</td>
<td>18.4</td>
<td>18.4</td>
<td>27.1</td>
<td>27</td>
<td>39.7</td>
<td></td>
<td></td>
<td>58.3</td>
<td></td>
<td>85.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.7</td>
<td>18.7</td>
<td>18.7</td>
<td>27.4</td>
<td>27.4</td>
<td>40.2</td>
<td>40.2</td>
<td>59.0</td>
<td>59.0</td>
<td>86.6</td>
<td>86.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.9</td>
<td>18.9</td>
<td>18.9</td>
<td>27.7</td>
<td></td>
<td>40.7</td>
<td></td>
<td></td>
<td>59.7</td>
<td></td>
<td>87.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.0</td>
<td>19.1</td>
<td>19.1</td>
<td>28.0</td>
<td>28.0</td>
<td>41.2</td>
<td>41.2</td>
<td>60.4</td>
<td>60.4</td>
<td>88.7</td>
<td>88.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.2</td>
<td>19.3</td>
<td>19.3</td>
<td>28.4</td>
<td></td>
<td>41.7</td>
<td></td>
<td></td>
<td>61.2</td>
<td></td>
<td>89.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td>19.6</td>
<td>19.6</td>
<td>28.7</td>
<td>28.7</td>
<td>42.2</td>
<td>42.2</td>
<td>61.9</td>
<td>61.9</td>
<td>62</td>
<td>90.9</td>
<td>90.9</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>13.5</td>
<td>19.8</td>
<td>19.8</td>
<td>29.1</td>
<td></td>
<td>42.7</td>
<td></td>
<td></td>
<td>62.6</td>
<td></td>
<td>92.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.7</td>
<td>20.0</td>
<td>20.0</td>
<td>20</td>
<td>29.4</td>
<td>29.4</td>
<td>43.2</td>
<td>43.2</td>
<td>43</td>
<td>63.4</td>
<td>63.4</td>
<td>93.1</td>
<td>93.1</td>
<td>93.1</td>
</tr>
<tr>
<td>13.8</td>
<td>20.3</td>
<td>20.3</td>
<td>29.8</td>
<td></td>
<td>43.7</td>
<td></td>
<td></td>
<td>64.2</td>
<td></td>
<td>94.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>20.5</td>
<td>20.5</td>
<td>30.1</td>
<td>30.1</td>
<td>44.2</td>
<td>44.2</td>
<td>44</td>
<td>64.9</td>
<td>64.9</td>
<td>95.3</td>
<td>95.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.2</td>
<td>20.8</td>
<td>20.8</td>
<td>30.5</td>
<td></td>
<td>44.8</td>
<td></td>
<td></td>
<td>65.7</td>
<td></td>
<td>96.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.3</td>
<td>21.0</td>
<td>21.0</td>
<td>30.9</td>
<td>30.9</td>
<td>45.3</td>
<td>45.3</td>
<td>45.3</td>
<td>66.5</td>
<td>66.5</td>
<td>97.6</td>
<td>97.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.5</td>
<td>21.3</td>
<td>21.3</td>
<td>31.2</td>
<td></td>
<td>45.9</td>
<td></td>
<td></td>
<td>67.3</td>
<td></td>
<td>98.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Practical capacitor model and specifications

![Figure 2: Model of a practical capacitor](image)

Table 10: Capacitor specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| C | The nominal value of the capacitance
Table 12 lists standard capacitance values |
| ESR | Equivalent series resistance
Ideally this is zero
Ceramic capacitors have the best ESR (typically in milliohms). Tantalum Electrolytic have ESR in the hundreds of milliohms and Aluminum Electrolytic have ESR in the ohms |
| ESL | Equivalent series inductance
Ideally this is zero
ESL ranges from 100 pH to 10 nH |
| Rp | Rp is a parallel leakage resistance (or insulation resistance)
Ideally this is infinite
This can range from tens of megaohms for some electrolytic capacitors to tens of gigohms for ceramic |
| Voltage rating| The maximum voltage that can be applied to the capacitor
Exceeding this rating damages the capacitor |
| Voltage coefficient | The change in capacitance with applied voltage in ppm/V
A high-voltage coefficient can introduce distortion
COG capacitors have the lowest coefficient
The voltage coefficient is most important in applications that use capacitors in signal processing such as filtering |
| Temperature coefficient | The change in capacitance with across temperature in ppm/°C
Ideally, the temperature coefficient is zero
The maximum specified drift generally ranges from 10 to 100ppm/°C or greater depending on the capacitor type (See Table 11 for details) |
Practical capacitors vs. frequency

Figure 3: Effect of ESR and ESL on capacitor frequency response
<table>
<thead>
<tr>
<th>Capacitor type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0G/NP0 (Type 1 ceramic)</td>
<td>Use in signal path, filtering, low distortion, audio, and precision</td>
</tr>
<tr>
<td></td>
<td>Limited capacitance range: 0.1 pF to 0.47 µF</td>
</tr>
<tr>
<td></td>
<td>Lowest temperature coefficient: ±30 ppm/°C</td>
</tr>
<tr>
<td></td>
<td>Low-voltage coefficient</td>
</tr>
<tr>
<td></td>
<td>Minimal piezoelectric effect</td>
</tr>
<tr>
<td></td>
<td>Good tolerance: ±1% to ±10%</td>
</tr>
<tr>
<td></td>
<td>Temperature range: −55°C to 125°C (150°C and higher)</td>
</tr>
<tr>
<td></td>
<td>Voltage range may be limited for larger capacitance values</td>
</tr>
<tr>
<td>X7R (Type 2 ceramic)</td>
<td>Use for decoupling and other applications where accuracy and low distortion are not required</td>
</tr>
<tr>
<td></td>
<td>X7R is an example of a type 2 ceramic capacitor</td>
</tr>
<tr>
<td></td>
<td>See EIA capacitor tolerance table for details on other types</td>
</tr>
<tr>
<td></td>
<td>Capacitance range: 10 pF to 47 µF</td>
</tr>
<tr>
<td></td>
<td>Temperature coefficient: ±833 ppm/°C (±15% across temp range)</td>
</tr>
<tr>
<td></td>
<td>Substantial voltage coefficient</td>
</tr>
<tr>
<td></td>
<td>Tolerance: ±5% to −20%/+80%</td>
</tr>
<tr>
<td></td>
<td>Temperature range: −55°C to 125°C</td>
</tr>
<tr>
<td></td>
<td>Voltage range may be limited for larger capacitance values</td>
</tr>
<tr>
<td>Y5V (Type 2 ceramic)</td>
<td>Use for decoupling and other applications where accuracy and low distortion are not required</td>
</tr>
<tr>
<td></td>
<td>Y5V is an example of a type 2 ceramic capacitor</td>
</tr>
<tr>
<td></td>
<td>See EIA capacitor tolerance table for details on other types</td>
</tr>
<tr>
<td></td>
<td>Temperature coefficient: −20%/+80% across temp range</td>
</tr>
<tr>
<td></td>
<td>Temperature range: −30°C to 85°C</td>
</tr>
<tr>
<td></td>
<td>Other characteristics are similar to X7R and other type 2 ceramic</td>
</tr>
<tr>
<td>Aluminum oxide electrolytic</td>
<td>Use for bulk decoupling and other applications where large capacitance is required</td>
</tr>
<tr>
<td></td>
<td>Note that electrolytic capacitors are polarized and will be damaged, if a reverse polarity connection is made</td>
</tr>
<tr>
<td></td>
<td>Capacitance range: 1 µF to 68,000 µF</td>
</tr>
<tr>
<td></td>
<td>Temperature coefficient: ±30 ppm/°C</td>
</tr>
<tr>
<td></td>
<td>Substantial voltage coefficient Tolerance: ±20%</td>
</tr>
<tr>
<td></td>
<td>Temperature range: −55°C to 125°C (150°C and higher)</td>
</tr>
<tr>
<td></td>
<td>Higher ESR than other types</td>
</tr>
<tr>
<td>Tantalum electrolytic</td>
<td>Capacitance range: 1 µF to 150 µF</td>
</tr>
<tr>
<td></td>
<td>Similar to aluminum oxide but smaller size</td>
</tr>
<tr>
<td>Polypropylene film</td>
<td>Capacitance range: 100 pF to 10 µF</td>
</tr>
<tr>
<td></td>
<td>Very low voltage coefficient (low distortion)</td>
</tr>
<tr>
<td></td>
<td>Higher cost than other types</td>
</tr>
<tr>
<td></td>
<td>Larger size per capacitance than other types</td>
</tr>
<tr>
<td></td>
<td>Temperature coefficient: 2% across temp range</td>
</tr>
<tr>
<td></td>
<td>Temperature range: −55°C to 100°C</td>
</tr>
</tbody>
</table>
Table 12: Standard capacitance table

<table>
<thead>
<tr>
<th>Standard capacitance table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1.1 1.2 1.3 1.5 1.6 1.8 2 2.2 2.4 2.7 3</td>
</tr>
<tr>
<td>3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1</td>
</tr>
</tbody>
</table>

Table 13: Ceramic capacitor tolerance markings

<table>
<thead>
<tr>
<th>Code</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>± 0.1 pF</td>
</tr>
<tr>
<td>C</td>
<td>± 0.25 pF</td>
</tr>
<tr>
<td>D</td>
<td>± 0.5 pF</td>
</tr>
<tr>
<td>F</td>
<td>± 1%</td>
</tr>
<tr>
<td>G</td>
<td>± 2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>± 5%</td>
</tr>
<tr>
<td>K</td>
<td>± 10%</td>
</tr>
<tr>
<td>M</td>
<td>± 20%</td>
</tr>
<tr>
<td>Z</td>
<td>+ 80%, −20%</td>
</tr>
</tbody>
</table>

Table 14: EIA capacitor tolerance markings (Type 2 capacitors)

<table>
<thead>
<tr>
<th>First letter symbol</th>
<th>Low temp limit</th>
<th>Second number symbol</th>
<th>High temp limit</th>
<th>Second letter symbol</th>
<th>Max. capacitance change over temperature rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>+10°C</td>
<td>2</td>
<td>+45°C</td>
<td>A</td>
<td>±1.0%</td>
</tr>
<tr>
<td>Y</td>
<td>−30°C</td>
<td>4</td>
<td>+65°C</td>
<td>B</td>
<td>±1.5%</td>
</tr>
<tr>
<td>X</td>
<td>−55°C</td>
<td>5</td>
<td>+85°C</td>
<td>C</td>
<td>±2.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>+105°C</td>
<td>D</td>
<td>±3.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>+125°C</td>
<td>E</td>
<td>±4.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>±7.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>±10.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>±15.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>±22.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>±22% ~ 33%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U</td>
<td>±22% ~ 56%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>±22% ~ 82%</td>
</tr>
</tbody>
</table>

Example

X7R: −55°C to +125°C, ±15.0%
Diodes and LEDs

![Diode and LED pin names](image)

Figure 5: Diode and LED pin names

Table 15: LED forward voltage drop by color

<table>
<thead>
<tr>
<th>Color</th>
<th>Wavelength (nm)</th>
<th>Voltage (approximate range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrared</td>
<td>940-850</td>
<td>1.4 to 1.7</td>
</tr>
<tr>
<td>Red</td>
<td>660-620</td>
<td>1.7 to 1.9</td>
</tr>
<tr>
<td>Orange / Yellow</td>
<td>620-605</td>
<td>2 to 2.2</td>
</tr>
<tr>
<td>Green</td>
<td>570-525</td>
<td>2.1 to 3.0</td>
</tr>
<tr>
<td>Blue/White</td>
<td>470-430</td>
<td>3.4 to 3.8</td>
</tr>
</tbody>
</table>

Note: The voltages given are approximate, and are intended to show the general trend for forward voltage drop of LED diodes. Consult the manufacturer's data sheet for more precise values.
Bipolar junction transistors (BJT)

![NPN and PNP transistors](image)

Figure 6: Bipolar transistors

1. **Current gain**
 \[I_C = I_B \cdot \beta \]

2. **Current law for bipolar transistors**
 \[I_C = I_B + I_E \]

3. **Voltage base to emitter is forward bias for normal operation. Approximately 0.7V.**
 \[V_{BE} \approx 0.7V \]

4. **Voltage base to collector is reverse bias for normal operation**
 \[V_{BC} \text{ is reversed biased} \]

5. **Collector to emitter voltage**
 \[V_{CE} \approx V_{BC} + V_{BE} \]

Where

- B, E, C = base, emitter, and collector
- \(I_B, I_E, I_C \) = base, emitter, and collector current
- \(\beta = h_{fe} \) = current gain
- \(V_{CE} \) = collector to emitter voltage
- \(V_{BC} \) = base to collector voltage
- \(V_{BE} \) = base to emitter voltage
Junction field effect transistors (JFET)

N-channel JFET

- V_G to V_S reverse biased for normal operation
- $I_D = I_S$
- $I_D = \frac{2I_{DSS}}{V_P} \left(V_{GS} - V_P - \frac{V_{DS}}{2} \right) V_{DS}$
- $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$

P-channel JFET

- V_G to V_S reverse biased for normal operation
- $I_D = I_S$
- $I_D = \frac{I_{DSS}}{V_P} \left(V_{GS} - V_P - \frac{V_{DS}}{2} \right) V_{DS}$
- $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$

Figure 7: JFET transistors

- $I_G \approx 0\text{V}$
- $I_D = I_S$
- V_P = pinch off voltage where the drain-to-source current stops
- $I_D = I_S$ = drain current, source current. These will be equal.
- V_{GS} = gate to source voltage
- V_{DS} = drain to source voltage

Where

- G, D, S = gate, drain, and source
- I_{DSS} = saturation current at zero gate to source voltage
- V_P = pinch off voltage where the drain-to-source current stops
- $I_D = I_S$ = drain current, source current. These will be equal.
Junction field effect transistors (JFET)

- The maximum gate-to-source voltage is 0V for an N-channel JFET. Greater than 0V will forward bias the gate-to-source junction and cause abnormal operation.
- The P-channel FET has similar characteristic curves but the polarity is opposite.

Figure 8: N-channel JFET characteristic curve I_D vs V_{GS}

Figure 9: N-channel JFET characteristic curve I_D vs V_{DS}
Metal oxide semiconductor field effect transistor (MOSFET)

Where

- G, D, S = gate, drain, and source
- μ_n = charge-carrier effective mobility
- C_{OX} = capacitance of oxide
- W, L = width and length of gate
- V_{GS} = gate to source voltage
- V_{DS} = drain to source voltage
- V_{TH} = threshold voltage
- λ = channel length modulation

Figure 10: MOSFET transistors

(10) Gate is insulated so that input current is negligible

(11) Drain current equal to source current

\[I_D = I_S \]

(12) Drain current in linear region (triode)

\[I_D = \mu_n C_{OX} \frac{W}{L} \left(V_{GS} - V_{TH} \right) \left(V_{DS} - \frac{V_{DS}^2}{2} \right) \]

(13) Drain current in saturation region

\[I_D = \frac{\mu_n C_{OX}}{2} \frac{W}{L} \left(V_{GS} - V_{TH} \right)^2 \left(1 + \lambda \left(V_{DS} - V_{DS_{sat}} \right) \right) \]
Metal oxide semiconductor field effect transistor (MOSFET)

The parameters, such as μ_n, C_{OX}, W, and L, may not be given in discrete MOSFET data sheets.

The P-channel FET has similar characteristic curves but the polarity is opposite.

Figure 11: N-channel MOSFET characteristic curve, I_D vs. V_{DS}
Notes
Discrete Components

Texas Instruments Analog Engineer's Pocket Reference

Resistor equations • Power equations • Capacitor equations (series, parallel, charge, energy) • Inductor equations (series, parallel, energy) • Capacitor charge and discharge • RMS and mean voltage definition • RMS for common signals • Logarithm laws • dB definitions • Pole and zero definition with examples •
Resistor equations

\[R_T = R_1 + R_2 + \cdots + R_N \]
\[R_T = \frac{R_1 \cdot R_2}{R_1 + R_2} \]
\[R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_N}} \]

(14) Series resistors
(15) Two parallel resistors
(16) Parallel resistors

Where

- \(R_T \) = equivalent total resistance
- \(R_1, R_2, R_3, \ldots R_N \) = component resistors

Ohm’s law and voltage divider equation

\[V = I \cdot R \]
\[V_{OUT} = \left(\frac{R_2}{R_1 + R_2} \right) \cdot V_{sup} \]

(17) Ohm’s law
(18) Voltage divider equation

Where

- \(V \) = voltage in volts (V)
- \(I \) = current in amps (A)
- \(R \) = resistance in ohms (Ω)

![Figure 12: Voltage divider](image-url)
Power equations

\[P = I \cdot V \]
\[P = \frac{V^2}{R} \]
\[P = I^2 \cdot R \]

(19) Power equation for voltage and current

(20) Power equation for voltage and resistance

(21) Power equation for current and resistance

Where

- \(P \) = power in watts (W)
- \(V \) = voltage in volts (V)
- \(I \) = current in amps (A)
- \(R \) = resistance in ohms (Ω)

\[P = \frac{1}{2} \cdot V_p \cdot I_p \cdot \cos \theta \]

(22) AC power equation

Where

- \(P \) = average power in watts (W) for sinusoidal signals
- \(V_p \) = peak voltage in volts (V)
- \(I_p \) = peak current in amps (A)
- \(\theta \) = phase angle between the voltage and current sine waves
Capacitor equations

\[C_t = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_N}} \]
(23) Series capacitors

\[C_t = \frac{C_1 C_2}{C_1 + C_2} \]
(24) Two series capacitors

\[C_t = C_1 + C_2 + \ldots + C_N \]
(25) Parallel capacitors

Where

\(C_t = \) equivalent total capacitance
\(C_1, C_2, C_3 \ldots C_N = \) component capacitors

\[Q = CV \]
(26) Charge storage

\[Q = It \]
(27) Charge defined

Where

\(Q = \) charge in coulombs (C)
\(C = \) capacitance in farads (F)
\(V = \) voltage in volts (V)
\(I = \) current in amps (A)
\(t = \) time in seconds (s)

\[i = C \frac{dv}{dt} \]
(28) Instantaneous current through a capacitor

Where

\(i = \) instantaneous current through the capacitor
\(C = \) capacitance in farads (F)
\(\frac{dv}{dt} = \) the instantaneous rate of voltage change

\[E = \frac{1}{2} CV^2 \]
(29) Energy stored in a capacitor

Where

\(E = \) energy stored in a capacitor in joules (J)
\(V = \) voltage in volts
\(C = \) capacitance in farads (F)
Inductor equations

\[L_t = L_1 + L_2 + \ldots + L_N \] \hspace{1cm} (30) Series inductors

\[L_t = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \ldots + \frac{1}{L_N}} \] \hspace{1cm} (31) Parallel inductors

\[L_t = \frac{L_1 \cdot L_2}{L_1 + L_2} \] \hspace{1cm} (32) Two parallel inductors

Where

\(L_t \) = equivalent total inductance
\(L_1, L_2, L_3 \ldots L_N \) = component inductance

\[v = L \frac{di}{dt} \] \hspace{1cm} (33) Instantaneous voltage across an inductor

Where

\(v \) = instantaneous voltage across the inductor
\(L \) = inductance in henries (H)
\(\frac{di}{dt} \) = instantaneous rate of current change

\[E = \frac{1}{2} L I^2 \] \hspace{1cm} (34) Energy stored in an inductor

Where

\(E \) = energy stored in an inductor in joules (J)
\(I \) = current in amps
\(L \) = inductance in henries (H)
Equation for charging an RC circuit

\[V_C = V_S \left(1 - e^{-\frac{t}{\tau}} \right) \]

(35) General relationship

Where

- \(V_C \) = voltage across the capacitor at any instant in time (t)
- \(V_S \) = the source voltage charging the RC circuit
- \(t \) = time in seconds
- \(\tau = RC \), the time constant for charging and discharging capacitors

Graphing equation 35 produces the capacitor charging curve below. Note that the capacitor is 99.3% charged at five time constants. It is common practice to consider this fully charged.

![Figure 13: RC charge curve](file)

Equation for charging an RC circuit

- \(V_C \): Voltage across the capacitor at any instant in time (t)
- \(V_S \): Source voltage charging the RC circuit
- \(t \): Time in seconds
- \(\tau = RC \): Time constant for charging and discharging capacitors

\[
V_C = V_S \left(1 - e^{-\frac{t}{\tau}} \right)
\]

Where

- \(V_C \) = Voltage across the capacitor at any instant in time (t)
- \(V_S \) = The source voltage charging the RC circuit
- \(t \) = Time in seconds
- \(\tau = RC \), the time constant for charging and discharging capacitors

Graphing equation 35 produces the capacitor charging curve below. Note that the capacitor is 99.3% charged at five time constants. It is common practice to consider this fully charged.
Equation for discharging an RC circuit

\[V_C = V_i e^{-\frac{t}{\tau}} \]

(36) General Relationship

Where

- \(V_C \) = voltage across the capacitor at any instant in time (t)
- \(V_i \) = the initial voltage of the capacitor at \(t = 0 \)s
- \(t \) = time in seconds
- \(\tau \) = RC, the time constant for charging and discharging capacitors

Graphing equation 36 produces the capacitor discharge curve below. Note that the capacitor is discharged to 0.7% at five time constants. It is common practice to consider this fully discharged.

Figure 14: RC discharge curve
Capacitor with constant current source

\[\frac{dv}{dt} = \frac{i}{C} \]

(37) General equation for capacitor voltage current

\[V_{OUT} = \frac{I_S}{C_L} t \]

(38) For constant current

Where

- \(I_S \) = constant current source in amps (A)
- \(V_{OUT} \) = voltage developed across the capacitor in volts (V)
- \(C_L \) = load capacitance in farads (F)
- \(t \) = time in seconds (s)
RMS and mean voltage

RMS voltage

\[V_{\text{RMS}} = \sqrt{\frac{1}{(T_2 - T_1)} \int_{T_1}^{T_2} [V(t)]^2 \, dt} \]

(39) General relationship

Where

- \(V(t) = \) continuous function of time
- \(t = \) time in seconds
- \(T_1 \leq t \leq T_2 = \) the time interval that the function is defined over

Mean voltage

\[V_{\text{MEAN}} = \frac{1}{(T_2 - T_1)} \int_{T_1}^{T_2} V(t) \, dt \]

(40) General relationship

Where

- \(V(t) = \) continuous function of time
- \(t = \) time in seconds
- \(T_1 \leq t \leq T_2 = \) the time interval that the function is defined over

\[V_{\text{RMS}} = \frac{V_{\text{PEAK}}}{\sqrt{2}} \]

(41) RMS for full wave rectified sine wave

\[V_{\text{MEAN}} = \frac{2 \times V_{\text{PEAK}}}{\pi} \]

(42) Mean for full wave rectified sine wave

![Figure 16: Full wave rectified sine wave](image-url)
RMS voltage and mean voltage (cont.)

\[V_{RMS} = V_{PEAK} \sqrt{\frac{\tau}{2T}} \] \hspace{1cm} (43) RMS for a half-wave rectified sine wave

\[V_{MEAN} = \frac{2 \cdot V_{PEAK}}{\pi} \left(\frac{\tau}{T} \right) \] \hspace{1cm} (44) Mean for a half-wave rectified sine wave

\[V_{RMS} = V_{PEAK} \sqrt{\frac{\tau}{T}} \] \hspace{1cm} (45) RMS for a square wave

\[V_{MEAN} = V_{PEAK} \left(\frac{\tau}{T} \right) \] \hspace{1cm} (46) Mean for a square wave
RMS voltage and mean voltage (cont.)

\[V_{\text{RMS}} = \sqrt{\frac{V_a^2 + V_a \cdot V_b + V_b^2 \cdot \frac{\tau}{T}}{3}} \] \hspace{1cm} (47) \text{RMS for a trapezoid}

\[V_{\text{MEAN}} = \frac{\tau}{2T} (V_a + V_b) \] \hspace{1cm} (48) \text{Mean for a trapezoid}

\[V_{\text{RMS}} = V_{\text{PEAK}} \sqrt{\frac{\tau}{3T}} \] \hspace{1cm} (49) \text{RMS for a triangle wave}

\[V_{\text{MEAN}} = \frac{\tau}{2T} V_{\text{PEAK}} \] \hspace{1cm} (50) \text{Mean for a triangle wave}

Figure 19: Trapezoidal wave

Figure 20: Triangle wave
Logarithmic mathematical definitions

\[
\log\left(\frac{A}{B}\right) = \log(A) - \log(B) \quad (51) \text{ Log of dividend}
\]

\[
\log(AB) = \log(A) + \log(B) \quad (52) \text{ Log of product}
\]

\[
\log(A^x) = x \log(A) \quad (53) \text{ Log of exponent}
\]

\[
\log_b(X) = \frac{\log_a(X)}{\log_a(b)} \quad (54) \text{ Changing the base of log function}
\]

\[
\log_2(X) = \frac{\log_{10}(X)}{\log_{10}(2)} \quad (55) \text{ Example changing to log base 2}
\]

\[
\ln(X) = \log_e(X) \quad (56) \text{ Natural log is log base } e
\]

\[
e = 2.718282 \quad (57) \text{ Exponential function to 6 digits}
\]

Alternative notations

\[
\exp(x) = e^x \quad (58) \text{ Different notation for exponential function}
\]

\[
3.54E - 2 = 3.54 \times 10^{-2} \quad (59) \text{ Different notation for scientific notation, sometimes confused with exponential function}
\]
dB definitions

Bode plot basics
The frequency response for the magnitude or gain plot is the change in voltage gain as frequency changes. This change is specified on a Bode plot, a plot of frequency versus voltage gain in dB (decibels). Bode plots are usually plotted as semi-log plots with frequency on the x-axis, log scale, and gain on the y-axis, linear scale. The other half of the frequency response is the phase shift versus frequency and is plotted as frequency versus degrees phase shift. Phase plots are usually plotted as semi-log plots with frequency on the x-axis, log scale, and phase shift on the y-axis, linear scale.

Definitions

Voltage gain (dB) = \(20 \log \left(\frac{V_{OUT}}{V_{IN}} \right)\)
Power gain (dB) = \(10 \log \left(\frac{P_{OUT}}{P_{IN}} \right)\)
Power measured (dBm) = \(10 \log \left(\frac{\text{Power measured (W)}}{1 \text{ mW}} \right)\)

<table>
<thead>
<tr>
<th>A (V/V)</th>
<th>A (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>-60</td>
</tr>
<tr>
<td>0.01</td>
<td>-40</td>
</tr>
<tr>
<td>0.1</td>
<td>-20</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>1,000</td>
<td>60</td>
</tr>
<tr>
<td>10,000</td>
<td>80</td>
</tr>
<tr>
<td>100,000</td>
<td>100</td>
</tr>
<tr>
<td>1,000,000</td>
<td>120</td>
</tr>
<tr>
<td>10,000,000</td>
<td>140</td>
</tr>
</tbody>
</table>

Table 16: Examples of common gain values and dB equivalent

Roll-off rate is the decrease in gain with frequency
Decade is a tenfold increase or decrease in frequency (from 10 Hz to 100 Hz is one decade)
Octave is the doubling or halving of frequency (from 10 Hz to 20 Hz is one octave)
Log scale

Figure 21 illustrates a method to graphically determine values on a logarithmic axis that are not directly on an axis grid line.

1. Given L = 1cm; D = 2cm, measured with a ruler
2. \(L/D = \log_{10}(f_p) \)
3. \(f_p = 10^{L/D} = 10^{(1\text{cm}/2\text{cm})} = 3.16 \)
4. Adjust for the decade range (for this example, \(f_p = 31.6 \text{ Hz} \))
Time to phase shift

\[\theta = \frac{T_S}{T_P} \times 360^\circ \]

(63) Phase shift from time

Where

- \(T_S \) = time shift from input to output signal
- \(T_P \) = period of signal
- \(\theta \) = phase shift of the signal from input to output

Example
Calculate the phase shift in degrees for Figure 24.

Answer

\[\theta = \frac{T_S}{T_P} \times 360^\circ = \left(\frac{0.225 \text{ ms}}{1 \text{ ms}} \right) \times 360^\circ = 81^\circ \]
Bode plots: Poles

Where

Pole location = \(f_P \) (cutoff freq)
Magnitude \(f < f_P \) = \(G_{DC} \) (for example, 100 dB)
Magnitude \(f = f_P \) = \(-3 \) dB
Magnitude \(f > f_P \) = \(-20 \) dB/decade
Phase \(f = f_P \) = \(-45^\circ\)
Phase \(0.1 f_P < f < 10 f_P \) = \(-45^\circ/\)decade
Phase \(f > 10 f_P \) = \(-90^\circ\)
Phase \(f < 0.1 f_P \) = \(0^\circ\)
Pole (equations)

\[G_V = \frac{V_{\text{OUT}}}{V_{\text{IN}}} = \frac{G_{\text{DC}}}{j \left(\frac{f}{f_P} \right) + 1} \]
(64) As a complex number

\[G_V = \frac{V_{\text{OUT}}}{V_{\text{IN}}} = \frac{G_{\text{DC}}}{\sqrt{\left(\frac{f}{f_P} \right)^2 + 1}} \]
(65) Magnitude

\[\theta = -\tan^{-1}\left(\frac{f}{f_P} \right) \]
(66) Phase shift

\[G_{\text{dB}} = 20 \log(G_V) \]
(67) Magnitude in dB

Where

- \(G_V \) = voltage gain in V/V
- \(G_{\text{dB}} \) = voltage gain in decibels
- \(G_{\text{DC}} \) = the dc or low frequency voltage gain
- \(f \) = frequency in Hz
- \(f_P \) = frequency at which the pole occurs
- \(\theta \) = phase shift of the signal from input to output
- \(j \) = indicates imaginary number or \(\sqrt{-1} \)
Bode plots (zeros)

![Bode plot diagram]

Figure 24: Zero gain and phase

Where

Zero location = \(f_Z \)

Magnitude (\(f < f_Z \)) = 0 dB

Magnitude (\(f = f_Z \)) = +3 dB

Magnitude (\(f > f_Z \)) = +20 dB/decade

Phase (\(f = f_Z \)) = +45°

Phase (\(0.1 f_Z < f < 10 f_Z \)) = +45°/decade

Phase (\(f > 10 f_Z \)) = +90°

Phase (\(f < 0.1 f_Z \)) = 0°
Zero (equations)

\[G_V = \frac{V_{OUT}}{V_{IN}} = G_{DC} \left[j \left(\frac{f}{f_Z} \right) + 1 \right] \] \hspace{1cm} (68) As a complex number

\[G_V = \frac{V_{OUT}}{V_{IN}} = G_{DC} \sqrt{\left(\frac{f}{f_Z} \right)^2 + 1} \] \hspace{1cm} (69) Magnitude

\[\theta = \tan^{-1}\left(\frac{f}{f_Z} \right) \] \hspace{1cm} (70) Phase shift

\[G_{dB} = 20 \log(G_V) \] \hspace{1cm} (71) Magnitude in dB

Where

- \(G_V \) = voltage gain in V/V
- \(G_{dB} \) = voltage gain in decibels
- \(G_{DC} \) = the dc or low frequency voltage gain
- \(f \) = frequency in Hz
- \(f_Z \) = frequency at which the zero occurs
- \(\theta \) = phase shift of the signal from input to output
- \(j \) = indicates imaginary number or \(\sqrt{-1} \)
Amplifier

Calculating amplifier offset
Op amp bandwidth
Full power bandwidth
Large signal step response
Settling time
Noise equations
Stability equations
Instrumentation amplifiers
Power calculations
Electrical overstress (EOS)
Basic op amp configurations

\[G_{CL} = 1 \]

(72) Gain for buffer configuration

\[G_{CL} = \frac{R_f}{R_1} + 1 \]

(73) Gain for non-inverting configuration

\[Z_{in} = \text{Op amp input impedance} \]

(74) Input impedance. See data sheet for value, but typically greater than 100MΩ to 100TΩ.

\[V_{cm} = V_{IN} \]

(75) The common mode voltage is equal to the input signal. Check for common mode limitations.
Basic op amp configurations (cont.)

\[G_{CL} = \frac{-R_f}{R_1} \quad (76) \text{ Gain for inverting configuration} \]

\[Z_{in} = R_1 \quad (77) \text{ Input impedance. Low compared to the non-inverting configuration.} \]

\[V_{cm} = 0V \quad (78) \text{ The common mode voltage held constant at 0V so the common mode range and CMRR is not a concern} \]

\[V_{OUT} = -R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \cdots + \frac{V_N}{R_N} \right) \quad (79) \text{ Transfer function for inverting summing amplifier} \]

\[V_{OUT} = -\frac{R_f}{R_1} (V_1 + V_2 + \cdots + V_N) \quad (80) \text{ Transfer function for inverting summing amplifier, assuming } R_1 = R_2 = \cdots = R_N \]

Figure 27: Inverting configuration

Figure 28: Inverting summing configuration
Basic op amp configurations (cont.)

\[V_{OUT} = \left(\frac{R_f}{R_{in}} + 1 \right) \left[\frac{V_1}{N} + \frac{V_2}{N} + \ldots + \frac{V_N}{N} \right] \]

(81) Transfer function for noninverting summing amplifier for equal input resistors

Where

\[R_1 = R_2 = \ldots = R_N \]

\[N = \text{number of input resistors} \]

Figure 29: Non-inverting summing configuration
Simple non-inverting amp with C_f filter

\[
G_{LF} = \frac{R_f}{R_1} + 1 \quad \text{(82) Gain for non-inverting configuration for } f < f_c
\]

\[
G_{HF} = 1 \quad \text{(83) Gain for non-inverting configuration for } f >> f_c
\]

\[
f_c = \frac{1}{2\pi R_f C_f} \quad \text{(84) Cut off frequency for non-inverting configuration}
\]

Figure 30: Non-inverting amplifier with C_f filter

Figure 31: Frequency response for non-inverting op amp with C_f filter
Simple inverting amp with C_f filter

$$G_{LF} = -\frac{R_f}{R_1}$$

(85) Gain for inverting configuration for $f < f_C$

$$G_{HF} = -20\text{dB/decade after } f_C$$

(86) Gain for inverting configuration for $f > f_C$

$$f_C = \frac{1}{2\pi R_f C_f}$$

(87) Cutoff frequency for inverting configuration

![Inverting amplifier with C_f filter](image)

Figure 32: Inverting amplifier with C_f filter

![Frequency response for inverting op amp with C_f filter](image)

Figure 33: Frequency response for inverting op amp with C_f filter
Differential filter cutoff

Select $C_{\text{DIF}} \geq 10C_{\text{CM1}}$

$$R_{\text{IN1}} = R_{\text{IN2}}$$

$$C_{\text{CM1}} = C_{\text{CM2}}$$

$$f_{\text{CM}} = \frac{1}{2\pi R_{\text{IN1}} C_{\text{CM1}}}$$

$$f_{\text{DIF}} = \frac{1}{2\pi (2R_{\text{IN1}}) \left(C_{\text{DIF}} + \frac{1}{2} C_{\text{CM1}} \right)}$$

Where

f_{DIF} = differential cutoff frequency

f_{CM} = common-mode cutoff frequency

R_{IN} = input resistance

C_{CM} = common-mode filter capacitance

C_{DIF} = differential filter capacitance

Note: Selecting $C_{\text{DIF}} \geq 10C_{\text{CM}}$ sets the differential mode cutoff frequency about 20 times lower than the common-mode cutoff frequency. This prevents common-mode noise from being converted into differential noise due to component tolerances.
Calculating amplifier offset voltage

\[R_{eq} = \frac{R_f \cdot R_g}{R_f + R_g} \]
\[V_{OS(IBN)} = I_{BN} \cdot R_{eq} \]
\[V_{OS(IBP)} = I_{BP} \cdot R_{IN} \]
\[V_{OS(total \ worst)} = \pm V_{OS(Amp)} \pm V_{OS(IBN)} \pm V_{OS(IBP)} \]
\[V_{OS(total \ stat)} = \sqrt{V_{OS(Amp)}^2 + V_{OS(IBN)}^2 + V_{OS(IBP)}^2} \]
\[G_n = \frac{R_f}{R_g} + 1 \]
\[V_{OS(RTO)} = V_{OS(RTI)} \cdot G_n \]

Where

- \(R_f, R_g \) = the feedback and gain setting resistors
- \(R_{IN} \) = resistance seen by noninverting input
- \(I_{BN}, I_{BP} \) = the current flowing from the inverting (\(I_{BN} \)) and noninverting (\(I_{BP} \)) op amp input as specified in the data sheet
- \(V_{os(amp)} \) = the input offset voltage specification from the op amp data sheet
- \(V_{OS(RTI)} \) = this is the offset referred to the input. This can be either \(V_{os(total \ worst)} \) or \(V_{os(total \ stat)} \).
Op amp bandwidth

\[GBW = G_n \cdot BW \]

(100) Gain bandwidth product defined

Where

\(GBW \) = gain bandwidth product, listed in op amp data sheet specification table
\(G_n \) = closed loop noise gain, always non-inverting gain
\(BW \) = the bandwidth limitation of the amplifier

Example

Determine bandwidth using equation 95, where
\(G_n = 100 \) (from amplifier configuration)
\(GBW = 22\text{MHz} \) (from data sheet)

Answer

\[BW = \frac{GBW}{G_n} = \frac{22\text{MHz}}{100} = 220\text{kHz} \]

Note that the same result can be graphically determined using the \(A_{OL} \) curve as shown below.
Small signal step response

\[\tau_R = \frac{0.35}{f_C} \]

(101) Rise time for a small signal step

Where

\(\tau_R \) = the rise time of a small signal step response
\(f_C \) = the closed-loop bandwidth of the op amp circuit

![Small signal step response waveform](image_url)

Figure 37: Small signal step response
Full power bandwidth

\[V_P = \frac{SR}{2\pi f} \] \hspace{1cm} (102) \hspace{1cm} \text{Maximum output without slew-rate induced distortion}

Where

- \(V_P \) = maximum peak output voltage before slew induced distortion occurs
- \(SR \) = slew rate
- \(f \) = frequency of applied signal

Example

\[V_P = \frac{SR}{2\pi f} = \frac{0.8 \text{V/µs}}{2\pi(40\text{kHz})} = 3.18V_{PK} \text{ or } 6.37V_{PP} \]

Notice that the above figure is graphed using equation 96 for the OPA277. The example calculation shows the peak voltage for the OPA277 at 40kHz. This can be determined graphically or with the equation.
Large signal response (slew rate)

Figure 39: Large signal step response

\[t_R = \frac{V_{(10\% \text{ to } 90\%)} }{SR} \]
(103) Rise time for large signal step response

\[t_{\text{slew}} \approx \frac{V_{pp}}{SR} \]
(104) Approximate total time for waveform to transition from peak to peak for large signal response

Where

\[V_{(10\% \text{ to } 90\%)} \] = the change in output voltage from 10% to 90% for a step input

SR = the slew rate of the amplifier

\[V_{pp} \] = peak-to-peak square wave voltage for a step response
Settling Time

Where

Settling time = the time from when an input step is applied until the output settles inside an error guard band. Settling time is measured with a large step (near full scale) input.

Prop delay = propagation delay. The time from when the input step is applied until the output begins to respond.

Slew = the output is transitioning at the maximum rate given by the slew rate specification in the amplifier data sheet.

Figure 40: Small signal step response
Combining noise sources

\[e_{nT} = \sqrt{(e_{n1})^2 + (e_{n2})^2} \] \hspace{1cm} (105) Combining two uncorrelated noise sources

\[e_{nT} = \sqrt{(e_{n1})^2 + (e_{n2})^2 + 2 \cdot C \cdot e_{n1} \cdot e_{n2}} \] \hspace{1cm} (106) Combining two correlated noise sources

Where

\[e_{nT} = \text{total noise} \]
\[e_{n1}, e_{n2} = \text{noise sources} \]
\[C = \text{correlation factor, ranges from -1 to +1. } C=0 \text{ for uncorrelated sources, } C=-1 \text{ for inversely correlated, and } C=+1 \text{ for directly correlated.} \]

Averaging noise sources

\[e_{nAvg} = \frac{e_n}{\sqrt{N}} \] \hspace{1cm} (107) Averaging noise

Where

\[e_{nAvg} = \text{the noise amplitude after averaging} \]
\[e_n = \text{the noise amplitude before averaging} \]
\[N = \text{the number of averages} \]
Noise bandwidth calculation

\[BW_n = K_n \cdot f_c \]

(108) Noise bandwidth

Where

- \(BW_n \) = noise bandwidth of the system
- \(K_n \) = the brick wall correction factor for different filter order
- \(f_c \) = –3 dB bandwidth of the system

![Figure 41: Op amp bandwidth for three different filter orders](image)

Table 17: Brick wall correction factors for noise bandwidth

<table>
<thead>
<tr>
<th>Number of poles</th>
<th>(K_n) brick wall correction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.57</td>
</tr>
<tr>
<td>2</td>
<td>1.22</td>
</tr>
<tr>
<td>3</td>
<td>1.13</td>
</tr>
<tr>
<td>4</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Broadband total noise calculation

\[E_{n(BB)} = e_n \cdot \sqrt{BW_n} \]

(109) Total RMS noise from broadband

Where

- \(E_{n(BB)} \) = total RMS noise from broadband noise
- \(e_n \) = broadband noise spectral density (nV/√Hz)
- \(BW_n \) = noise bandwidth (Hz)
1/f total noise calculation

\[E_{n(\text{normal})} = e_{n(\text{flicker})} \sqrt{f_o} \]

(110) Normalized 1/f noise at 1 Hz

Where

- \(E_{n(\text{normal})} \) = 1/f noise normalized to 1 Hz
- \(e_{n(\text{flicker})} \) = noise spectral density measured in the 1/f region
- \(f_o \) = the frequency at which the 1/f noise \(e_{n(\text{flicker})} \) is measured

\[E_{n(\text{flicker})} = E_{n(\text{normal})} \sqrt{\ln \left(\frac{f_H}{f_L} \right)} \]

(111) 1/f total noise calculation

Where

- \(E_{n(\text{flicker})} \) = total RMS noise from flicker
- \(E_{n(\text{normal})} \) = 1/f noise normalized to 1 Hz
- \(f_H \) = upper cutoff frequency or noise bandwidth
- \(f_L \) = lower cutoff frequency, normally set to 0.1 Hz

Table 18: Peak-to-peak conversion

<table>
<thead>
<tr>
<th>Number of standard deviations</th>
<th>Percent chance reading is in range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(\sigma) (same as (\pm 1\sigma))</td>
<td>68.3%</td>
</tr>
<tr>
<td>3(\sigma) (same as (\pm 1.5\sigma))</td>
<td>86.6%</td>
</tr>
<tr>
<td>4(\sigma) (same as (\pm 2\sigma))</td>
<td>95.4%</td>
</tr>
<tr>
<td>5(\sigma) (same as (\pm 2.5\sigma))</td>
<td>98.8%</td>
</tr>
<tr>
<td>6(\sigma) (same as (\pm 3\sigma))</td>
<td>99.7%</td>
</tr>
<tr>
<td>6.6(\sigma) (same as (\pm 3.3\sigma))</td>
<td>99.9%</td>
</tr>
</tbody>
</table>
Thermal noise calculation

\[
E_{n(R)} = \sqrt{4 \cdot k \cdot T_K \cdot R \cdot BW_n}
\] \hspace{1cm} (112) Total RMS thermal noise

\[
e_{n(R)} = \sqrt{4 \cdot k \cdot T_K \cdot R}
\] \hspace{1cm} (113) Thermal noise spectral density

Where

\(E_{n(R)}\) = total RMS noise from resistance, also called thermal noise (V RMS)

\(e_{n(R)}\) = noise spectral density from resistance, also called thermal noise (V/\(\sqrt{\text{Hz}}\))

\(k\) = Boltzmann’s constant \(1.38 \times 10^{-23}\) J/K

\(T_K\) = temperature in Kelvin, to convert degrees Celsius to Kelvin \(T_K = T_c + 273.15\)

\(BW_n\) = noise bandwidth in Hz

Figure 42: Noise spectral density vs. resistance
Op amp noise model

Figure 43: Op amp noise model
Total noise calculations

\[R_{eq} = \frac{R_f \cdot R_g}{R_f + R_g} \]
(114) Equivalent feedback resistance

\[e_{n(\text{inn})} = i_{\text{inn}} \cdot R_{eq} \]
(115) Noise RTI from \(i_{\text{inn}} \) flowing into feedback resistors

\[e_{n(\text{inp})} = i_{\text{inp}} \cdot R_{in} \]
(116) Noise RTI from \(i_{\text{inp}} \) flowing into input resistance

\[e_{n(\text{Req})} = \sqrt{4 \cdot k_T \cdot T_K \cdot R_{eq}} \]
(117) Thermal noise RTI from feedback network

\[e_{n(\text{Rin})} = \sqrt{4 \cdot k_T \cdot T_K \cdot R_{in}} \]
(118) Thermal noise RTI from input resistor

\[e_{n(\text{BB})} \]
(119) Broadband noise from data sheet

\[E_n = e_n \cdot \sqrt{BW_n} \]
(120) General equation to convert spectral density to RMS

\[E_{n(\text{normal})} = e_{n(\text{flicker})} \sqrt{f_0} \]
(121) Flicker noise normalized to 1Hz

\[E_{n(\text{flicker})} = E_{n(\text{normal})} \cdot \sqrt{\ln \left(\frac{f_1}{f_L} \right)} \]
(122) Op amp RMS flicker noise

\[E_{n(\text{RTI})} = \sqrt{E_{n(\text{BB})}^2 + E_{n(\text{flicker})}^2 + E_{n(\text{Rin})}^2 + E_{n(\text{Req})}^2 + E_{n(\text{inp})}^2 + E_{n(\text{inn})}^2} \]
(123) Total noise RTI

\[G_n = \frac{R_f}{R_g} + 1 \]
(124) Noise gain

\[E_{n(\text{RTO})} = E_{n(\text{RTI})} \cdot G_n \]
(125) Total noise RTO

Note 1: equations above were defined previously

Note 2: capital letter (e.g., “E”) indicates RMS noise, and lowercase letter (e.g., “e”) indicate noise density (e.g., \(V / \sqrt{\text{Hz}} \))

RTO = referred to the output
RTI = referred to the input
AC response versus frequency (dominant 2-pole system)

Figure 43 illustrates a bode plot with four different examples of AC peaking.

![AC response bode plot](image)

Figure 44: Stability – AC peaking relationship example

Phase margin versus AC peaking

This graph illustrates the phase margin for any given level of AC peaking. Note that 45° of phase margin or greater is required for stable operation.

![Phase margin vs. AC peaking](image)

Figure 45: Stability – phase margin vs. peaking for a two-pole system
Transient overshoot (dominant 2-pole system)

Figure 46 illustrates a transient response with two different examples of percentage overshoot.

![Graph showing transient response with percentage overshoot and phase margin](image)

Figure 46: Stability – transient overshoot example

Phase margin versus percentage overshoot

This graph illustrates the phase margin for any given level of transient overshoot. Note that 45° of phase margin or greater is required for stable operation.

![Graph showing phase margin vs. percentage overshoot](image)

Figure 47: Stability – phase margin vs. percentage overshoot
Stability open loop SPICE analysis

Figure 48: Common spice test circuit used for stability

\[
A_{OL_LOADED} = \frac{V_O}{V_{FB}} \quad (126) \text{ Loaded open-loop gain}
\]

\[
\beta = \frac{V_{FB}}{V_F} \quad (127) \text{ Feedback factor}
\]

\[
\frac{1}{\beta} = \frac{1}{V_{FB}} \quad (128) \text{ Closed-loop noise gain}
\]

\[
A_{OL_LOADED} \times \beta = V_O \quad (129) \text{ Loop gain}
\]

Where

\(V_O \) = the voltage at the output of the op amp

\(V_{OUT} \) = the voltage output delivered to the load, which may be important to the application but is not considered in stability analysis

\(V_{FB} \) = feedback voltage

\(R_F, R_1, R_{ISO} \) and \(C_L \) = the op amp feedback network and load. Other op amp topologies will have different feedback networks; however, the test circuit will be the same for most cases. Figure 47 shows the exception to the rule (multiple feedback).

\(C_1 \) and \(L_1 \) = components that facilitate SPICE analysis. They are large (1TF, 1TH) to make the circuit closed-loop for DC, but open loop for AC frequencies. SPICE requires closed-loop operation at DC for convergence.
Stability open loop SPICE analysis (cont.)

Figure 49: Alternative (multiple feedback) SPICE test circuit used for stability

\[A_{OL, \text{LOADED}} = V_O \] \hspace{1cm} (130) Loaded open loop gain

\[\beta = \frac{V_{FB}}{V_O} \] \hspace{1cm} (131) Feedback factor

\[\frac{1}{\beta} = \frac{V_O}{V_{FB}} \] \hspace{1cm} (132) Closed-loop noise gain

\[A_{OL, \text{LOADED}} \times \beta = V_{FB} \] \hspace{1cm} (133) Loop gain

Where

- \(V_O \) = the voltage at the output of the op amp
- \(V_{OUT} \) = the voltage output delivered to the load. This may be important to the application but is not considered in stability analysis.
- \(V_{FB} \) = feedback voltage
- \(R_F, R_1, R_{ISO} \) and \(C_F \) = the op amp feedback network. Because there are two paths for feedback, the loop is broken at the input.
- \(C_1 \) and \(L_1 \) = components that facilitate SPICE analysis. They are large (1TF, 1TH) to make the circuit closed loop for DC, but open loop for AC frequencies. SPICE requires closed-loop operation at DC for convergence.
- \(C_{IN} \) = the equivalent input capacitance taken from the op amp datasheet. This capacitance normally does not need to be added because the model includes it. However, when using this simulation method the capacitance is isolated by the 1TH inductor.
Stability transient square wave lab test

```
R1
+Vs
Voffset
VIN

\[ V_{\text{OUT}} \]

<table>
<thead>
<tr>
<th>Volts</th>
<th>Voffset</th>
<th>50mVpp</th>
</tr>
</thead>
</table>

Figure 50: Transient real world stability test
```

Test tips

- Choose test frequency << f_{cl}
- Small signal (Vpp ≤ 50 mV) ac output square wave (for example, 1 kHz)
- Adjust V_{IN} amplitude to yield output ≤ 50 mVpp
- Worst case is usually when V_{offset} = 0 (largest R_O, for I_{OUT} = 0A)
- Use V_{offset} as desired to check all output operating points for stability
- Set scope = AC coupled and expand vertical scope scale to look for amount of overshoot, undershoot, and ringing on V_{OUT}
- Use 1x attenuation scope probe on V_{OUT} for best resolution
- Use percentage overshoot to determine phase margin using Figure 47
Stability AC sine wave lab test

Test tips
- Small signal (Vpp \leq 50 \text{ mV}) AC output sine wave
- Adjust \(V_{\text{IN}} \) amplitude to yield output \(\leq 50 \text{ mVpp} \)
- Worst case is usually when \(V_{\text{offset}} = 0 \) (largest \(R_O \), for \(I_{\text{OUT}} = 0 \text{A} \))
- Use \(V_{\text{offset}} \) as desired to check all output operating points for stability
- Sweep input frequency or use network analyzer to automatically sweep frequency
- Use AC coupling
- Use 1x attenuation scope probe on \(V_{\text{OUT}} \) for best resolution
- Use AC peaking in decibels to determine phase margin using Figure 45

Figure 51: AC sweep real world stability test
Power dissipation calculation

![Diagram of a non-inverting amplifier](image)

Figure 52: Current and power dissipation for non-inverting amplifier

Non-inverting amplifier power dissipation for specific V_{OUT}

\[
I_{RL} = \frac{V_{OUT}}{R_L} \quad \text{(134) Current through load resistor}
\]

\[
I_{FB} = \frac{V_{OUT}}{R_F + R_g} \quad \text{(135) Current through feedback network}
\]

\[
P_L = \left(|I_{RL}| + |I_{FB}| \right) \left(|V_{sup}| - |V_{OUT}| \right) \quad \text{(136) Power dissipated inside op amp from load current.}
\]

\[
P_Q = \left(V_{pos} - V_{neg} \right) \cdot I_Q \quad \text{(137) Total power from quiescent current}
\]

\[
P_T = P_L + P_Q \quad \text{(138) Total power dissipated inside the op amp}
\]

Non-inverting amplifier maximum power dissipation

\[
R_{L_EQ} = (R_L) \parallel \left(R_g + R_F \right) \quad \text{(139) Equivalent load resistance}
\]

\[
P_{dc_max} = \frac{V_{sup}^2}{4 \cdot R_{L_EQ}} \quad \text{(140) Maximum DC power dissipation inside the amplifier. Max power occurs when } V_{OUT} = \frac{1}{2} V_{sup}. V_{sup} = V_{pos} = |V_{neg}| \text{ for a dual symmetrical supply. } V_{sup} = V_{pos} \text{ for single supply configuration.}
\]

\[
P_{ac_max_avg} = \frac{2 \cdot V_{sup}^2}{\pi^2 \cdot R_{L_EQ}} \quad \text{(141) Maximum AC average power dissipation for a sinusoidal signal on dual supply configuration. Max average power occurs when the } V_{OUT_pk} = (2 \cdot Vcc/\pi). V_{sup} = V_{pos} = V_{neg} \text{ for a dual symmetrical supply. For single supply max average AC power is equal to } P_{dc_max}. \text{ This assumes sinewave is centered at mid-supply.}
\]

\[
T_j = \theta_{ja} \cdot P + T_a \quad \text{(142) Junction temperature as a function of power and ambient temperature. } T_j = \text{junction temperature, } \theta_{ja} = \text{junction to ambient thermal resistance, } P = P_{dc_max} \text{ or } P_{ac_max_avg} \text{ depending on your application. } T_a = \text{ambient temperature.}
\]
Power dissipation calculation (cont.)

Inverting amplifier power dissipation for specific V_{OUT}

$$I_{RL} = \frac{V_{OUT}}{RL}$$ \hspace{1cm} (143) Current through load resistor

$$I_{FB} = \frac{V_{OUT}}{RF}$$ \hspace{1cm} (144) Current through feedback network

$$P_L = (|I_{RL}| + |I_{FB}|)(|V_{sup}| - |V_{OUT}|)$$ \hspace{1cm} (145) Power dissipated in op amp from load current, where $V_{sup} = V_{pos}$ if the amplifier is sourcing, or V_{neg} if the amplifier is sinking

$$P_Q = (V_{pos} - V_{neg}) \cdot I_Q$$ \hspace{1cm} (146) Total power from quiescent current

$$P_T = P_L + P_Q$$ \hspace{1cm} (147) Total power dissipated inside the op amp

$$R_{L_EQ} = (R_L) \parallel (R_F)$$ \hspace{1cm} (148) Equivalent load resistance

Inverting amplifier maximum power dissipation

$$P_{dc_max} = \frac{V_{sup}^2}{4 \cdot R_{L_EQ}}$$ \hspace{1cm} (149) Maximum DC power dissipation inside the amplifier. Max power occurs when $V_{OUT} = \frac{1}{2} V_{sup}$. $V_{sup} = V_{pos} = |V_{neg}|$ for a dual symmetrical supply. $V_{sup} = V_{pos}$ for single supply configuration.

$$P_{ac_max_avg} = \frac{2 \cdot V_{sup}^2}{\pi^2 \cdot R_{L_EQ}}$$ \hspace{1cm} (150) Maximum AC average power dissipation for a sinusoidal signal on dual supply configuration. Max average power occurs when the $V_{OUT_pk} = (2 \cdot V_{cc}/\pi)$. $V_{sup} = V_{pos} = V_{neg}$ for a dual symmetrical supply. For single supply max average AC power is equal to P_{dc_max}. This assumes sinewave is centered at mid-supply.

$$T_j = \theta_{ja} \cdot P + T_a$$ \hspace{1cm} (151) Junction temperature as a function of power and ambient temperature. $T_j =$ junction temperature. $\theta_{ja} =$ junction to ambient thermal resistance. $P = P_{dc_max}$ or $P_{ac_max_avg}$ depending on your application. $T_a =$ ambient temperature.
Electrical overstress (EOS) protection

Method for selecting EOS protection

1. Choose a unidirectional transient voltage suppressor (TVS) diode that has a reverse standoff equal to the normal operating supply voltage. For example, reverse standoff of $V_R = 5V$, for an amplifier with a 5V supply. This assures a low TVS diode leakage.

2. Try to find a TVS diode that also breaks down below the absolute maximum rating for the device that is being protected. For example, breakdown of $V_{BR} \leq 6V$ for an absolute maximum of 6V. Note that this may not always be possible. Choose the lowest breakdown available.

3. Choose a series resistor, R_S, to limit the current to the absolute maximum input current. This is commonly $10mA$ for many devices. $R_S > (V_{overstress} - 0.7V - V_{BR})$. For this example, $R_S = (15V - 0.7V - 6V) = 830\Omega$.

4. Increase the value of the series resistor for more design margin.

Figure 54: EOS protection during overstress event
Electrical overstress (EOS) protection

Figure 55: Typical unidirectional TVS I-V curve

Where

\(V_{BR} \) = breakdown voltage

\(V_R \) = stand-off voltage. The normal operating voltage with a guaranteed reverse leakage current.

\(V_C \) = clamping voltage. The voltage across the TVS when maximum current is flowing.

\(V_F \) = forward voltage drop, typically 0.7V for a unipolar TVS diode

\(I_{BR} \) = breakdown current @ \(V_{BR} \)

\(I_R \) = reverse leakage @ \(V_R \). Typically in the microamps.

\(I_F \) = forward current @ \(V_F \)

\(I_{PP} \) = maximum peak pulse current @ \(V_C \), applied for a limited time (microseconds)
PCB and Wire

- PCB trace resistance for 1oz and 2oz Cu
- Conductor spacing in a PCB for safe operation
- Current carrying capacity of copper conductors
- Package types and dimensions
- PCB trace capacitance and inductance
- PCB via capacitance and inductance
- Common coaxial cable specifications
- Coaxial cable equations
- Resistance per length for wire types
- Maximum current for wire types
Table 19: Printed circuit board conductor spacing

<table>
<thead>
<tr>
<th>Voltage between conductors (DC or AC peaks)</th>
<th>Minimum spacing</th>
<th>Bare board</th>
<th>Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
</tr>
<tr>
<td>0-15</td>
<td>0.05 mm [0.00197 in]</td>
<td>0.1 mm [0.0039 in]</td>
<td>0.1 mm [0.0039 in]</td>
</tr>
<tr>
<td>16-30</td>
<td>0.05 mm [0.00197 in]</td>
<td>0.1 mm [0.0039 in]</td>
<td>0.1 mm [0.0039 in]</td>
</tr>
<tr>
<td>31-50</td>
<td>0.1 mm [0.0039 in]</td>
<td>0.6 mm [0.024 in]</td>
<td>0.6 mm [0.024 in]</td>
</tr>
<tr>
<td>51-100</td>
<td>0.1 mm [0.0039 in]</td>
<td>0.6 mm [0.024 in]</td>
<td>1.5 mm [0.0591 in]</td>
</tr>
<tr>
<td>101-150</td>
<td>0.2 mm [0.0079 in]</td>
<td>0.6 mm [0.024 in]</td>
<td>3.2 mm [0.126 in]</td>
</tr>
<tr>
<td>151-170</td>
<td>0.2 mm [0.0079 in]</td>
<td>1.25 mm [0.0492 in]</td>
<td>3.2 mm [0.126 in]</td>
</tr>
<tr>
<td>171-250</td>
<td>0.2 mm [0.0079 in]</td>
<td>1.25 mm [0.0492 in]</td>
<td>6.4 mm [0.252 in]</td>
</tr>
<tr>
<td>251-300</td>
<td>0.2 mm [0.0079 in]</td>
<td>1.25 mm [0.0492 in]</td>
<td>12.5 mm [0.492 in]</td>
</tr>
<tr>
<td>301-500</td>
<td>0.25 mm [0.00984 in]</td>
<td>2.5 mm [0.0984 in]</td>
<td>12.5 mm [0.492 in]</td>
</tr>
</tbody>
</table>

Where:

- B1 = internal conductors
- B2 = external conductors uncoated sea level to 3050m
- B3 = external conductors uncoated above 3050m
- B4 = external conductors coated with permanent polymer coating (any elevation)
- A5 = external conductors with conformal coating over assembly (any elevation)
- A6 = external component lead/termination, uncoated, sea level to 3050m
- A7 = external component lead termination, with conformal coating (any elevation)

Extracted with permission from IPC-2221B, Table 6-1
For additional information, the entire specification can be downloaded at www.ipc.org
Example
Find the current that will cause a 20°C temperature rise in a PCB trace that is 0.1 inch wide and uses 2 oz/ft² copper. (Assume traces are on inner layer of PCB.)

Answer
First translate 0.1 inch to 250 sq. mils using bottom chart. Next find the current associated with 20°C and 250 sq. mils using top chart (Answer = 5A).

Extracted with permission from IPC-2152, Figure 5-1
For additional information the entire specification can be downloaded at www.ipc.org
Figure 57: PCB trace resistance

\[R = \rho \frac{L}{t \cdot W} \left[1 + \alpha(T - 25°C)\right] \]

(152) Trace resistance

Where

\[\rho = \text{resistivity of trace (for copper = } 17 \cdot 10^{-6} \text{ Ω:mm)} \]
\[\alpha = \text{temperature coefficient (for copper = } 3.9 \cdot 10^{-3} /°C) \]

L, W = length and width of trace in mm or mil. Note: L and W must both be in the same units.

\[t = \text{thickness of trace in mm (1 oz copper = 0.0348mm, 2 oz copper = 0.0696mm)} \]
\[T = \text{temperature in °C} \]

Example
What is the resistance of a 20 mil long, 5 mil wide trace for a 1 oz Cu thickness at 25°C and 125°C?

Answer
\[R_{25°C} = 1.95mΩ, \ R_{125°C} = 2.72mΩ \]

\[R = \frac{(17 \cdot 10^{-6} \text{ Ω:mm}) \cdot 20\text{mil}}{(0.0348mm) \cdot 5\text{mil}} \left[1 + 3.9 \cdot 10^{-3}/°C(125°C-25°C)\right] = 2.72mΩ \]
Example

What is the resistance of a 20 mil long, 5 mil wide trace for a 1 oz-Cu thickness at 25°C and 125°C?

Answer

R25°C = 2 mΩ, R125°C = 3 mΩ. The points are circled on the curves.
PCB trace resistance for 2 oz-Cu

Figure 60: PCB trace resistance vs. length and width for 2 oz-Cu, 25°C

Figure 61: PCB trace resistance vs. length and width for 2 oz-Cu, 125°C

Example
What is the resistance of a 200 mil long, 25 mil wide trace for a 2 oz-Cu thickness at 25°C and 125°C?

Answer
R25°C = 2 mΩ, R125°C = 3 mΩ. The points are circled on the curves.
Common package type and dimensions

SOIC-14

D

50mil
1.27mm

34mil
0.875mm

157mil
4.0mm

244mil
5.2mm

SOIC-8

D

50mil
1.27mm

157mil
5.0mm

244mil
5.2mm

TSSOP-14

PW

25.5mil
0.65mm

177mil
4.5mm

260mil
5.5mm

MSOP-10

DGK

15.7mil
0.5mm

12mil
0.35mm

196mil
4.98mm

MSOP-8

DGK

25.6mil
0.65mm

122mil
3.05mm

199mil
5.05mm

TSSOP-8

PW

25.6mil
0.65mm

122mil
3.10mm

260mil
6.60mm

SOT23-5

DBV

37.4mil
0.95mm

68.9mil
1.75mm

118mil
3.00mm

SC70-5

DCK

25.5mil
0.65mm

55.1mil
1.40mm

94.5mil
2.40mm

2512

6432 (Metric)

250mil
5.4mm

12mil
0.3mm

2012 (Metric)

0805

20mil
0.8mm

50mil
1.2mm

2012 (Metric)

0603

30mil
1.2mm

60mil
1.6mm

1608 (Metric)

0402

20mil
0.5mm

50mil
1.2mm

1005 (Metric)
PCB parallel plate capacitance

\[
C(pF) = \frac{k \cdot l \cdot w \cdot \varepsilon_r}{h}
\]

(153) Capacitance for parallel copper planes

Where

- \(k \) = permittivity of free space.
- Both the metric and imperial version of the constant are given.
 - \(k = 8.854 \times 10^{-3} \text{ pF/mm, or } 2.247 \times 10^{-4} \text{ pF/mil} \)
- \(l \) = length (metric in mm, or imperial in mil)
- \(w \) = width (metric in mm, or imperial in mil)
- \(h \) = separation between planes (metric in mm, or imperial in mil)
- \(\varepsilon_r \) = PCB relative dielectric constant (\(\varepsilon_r \approx 4.5 \) for FR-4)

Example

Calculate the total capacitance if \(l = 5.08\text{mm}, \ w = 12.7\text{mm}, \ h = 1.575\text{mm}, \) and \(\varepsilon_r = 4.5 \).

Answer

\[
C(pF) = \frac{(8.854 \times 10^{-3} \text{ pF/mm}) \times 5.08\text{mm} \times 12.7\text{mm} \times 4.5}{1.575\text{mm}} = 1.63\text{pF}
\]

Example

Calculate the total capacitance if \(l = 200\text{mil}, \ w = 500\text{mil}, \ h = 62\text{mil}, \) and \(\varepsilon_r = 4.5 \).

Answer

\[
C(pF) = \frac{(2.247 \times 10^{-4} \text{ pF/mil}) \times 200\text{mil} \times 500\text{mil} \times 4.5}{62\text{mil}} = 1.63\text{pF}
\]
PCB and Wire

PCB microstrip capacitance and inductance

L(nH) = k_L • l • \ln\left(\frac{5.98 \cdot h}{0.8 \cdot w + t}\right) \quad (154) \text{ Inductance for microstrip}

C(pF) = \frac{k_C \cdot l \cdot (\varepsilon_r + 1.41)}{\ln\left(\frac{5.98 \cdot h}{0.8 \cdot w + t}\right)} \quad (155) \text{ Capacitance for microstrip}

Z_0 = \sqrt{\frac{L}{C}} = \frac{87 \Omega}{\sqrt{(\varepsilon_r + 1.41)}} \cdot \ln\left(\frac{5.98 \cdot h}{0.8 \cdot w + t}\right) \quad (156) \text{ Characteristic impedance for microstrip}

Where

k_L = PCB inductance per unit length.
Both the metric and imperial version of the constant are given.
k_L = 2nH/cm, or 5.071nH/in

k_C = PCB capacitance per unit length.
Both the metric and imperial version of the constant are given.
k_C = 0.264pF/cm, or 0.67056pF/in

l = length of microstrip (metric in cm, or imperial in inches)
w = width of microstrip (metric in mm, or imperial in mil)
t = thickness of copper (metric in mm, or imperial in mil)
h = separation between planes (metric in mm, or imperial in mil)
\varepsilon_r = PCB dielectric constant (\varepsilon_r = 4.5 for FR-4)

For imperial:
Copper thickness (mils) = 1.37 \times (\text{number of ounces})
i.e. 1 oz Cu = 1.37mits
i.e. \frac{1}{2} oz Cu = 0.684mils

Example
Calculate the total inductance and capacitance if l = 2.54cm, w = 0.254mm, t = 0.0356mm, h = 0.8mm, and \varepsilon_r = 4.5 for FR-4.

Answer

L(nH) = (2nH/cm) \cdot (2.54cm) \cdot \ln\left(\frac{5.98 \cdot 0.8mm}{0.8 \cdot 0.254mm + 0.0356mm}\right) = 15.2nH

C(pF) = \frac{(0.264pF/cm) \cdot (2.54cm) \cdot (4.5 + 1.41)}{\ln\left(\frac{5.98 \cdot 0.8mm}{0.8 \cdot 0.254mm + 0.0356mm}\right)} = 1.3pF

Figure 63: PCB Microstrip capacitance and inductance
PCB adjacent copper traces

\[C(pF) = \frac{k \cdot t \cdot l}{d} \] (157) Same layer

\[C(pF) = \frac{k \cdot \varepsilon_r \cdot w \cdot l}{h} \] (158) Different layers

Where

- \(l \) = length of the copper trace (mil or mm)
- \(k = 8.854 \times 10^{-3} \text{pF/mm} \), or \(k = 2.247 \times 10^{-4} \text{pF/mil} \)
- \(t \) = thickness of trace (mil or mm)
- \(d \) = distance between traces if on same layer (mil or mm)
- \(w \) = width of trace (mil or mm)
- \(h \) = separation between planes (mil or mm)
- \(\varepsilon_r \) = PCB dielectric constant (\(\varepsilon_r \approx 4.5 \) for FR-4)

Figure 64: Capacitance for adjacent copper traces

Example
Calculate the total capacitance for both cases if \(l = 2.54\text{mm}, t = 0.0348\text{mm}, d = 0.254\text{mm}, w = 0.635\text{mm}, h = 1.6\text{mm} \), and \(\varepsilon_r = 4.5 \) for FR-4.

Answer

\[C(pF) \approx \frac{(8.854 \times 10^{-3} \text{pF/mm})(0.0348\text{mm})(2.54\text{mm})}{0.254\text{mm}} = 0.0031\text{pF} \] (same layer)

\[C(pF) \approx \frac{(8.854 \times 10^{-3} \text{pF/mm})(4.5\text{mm})(0.635\text{mm})(2.54\text{mm})}{1.6\text{mm}} = 0.04\text{pF} \] (adjacent layers)

Example
Calculate the total capacitance for both cases if \(l = 100\text{mil}, t = 1.37\text{mil}, d = 10\text{mil}, w = 25\text{mil}, h = 63\text{mil} \), and \(\varepsilon_r = 4.5 \) for FR-4.

Answer

\(C = 0.0031\text{pF} \) (same layer), \(C = 0.4\text{pF} \) (adjacent layers). Note: this is the same example as above with imperial units.
PCB via capacitance and inductance

\[L(nH) = k_L \cdot h \left[1 + \ln \left(\frac{4h}{d} \right) \right] \] \hspace{1cm} (159) \text{ Inductance for via}

\[C(pF) = \frac{k_C \cdot \varepsilon_r \cdot h \cdot d_1}{d_2 - d_1} \] \hspace{1cm} (160) \text{ Capacitance for via}

Where

\(k_L = \) PCB inductance per unit length.
Both the metric and imperial version of the constant are given.
\(k_L = 0.2nH/mm, \text{ or } 5.076 \times 10^{-3}nH/mil \)

\(k_C = \) PCB capacitance per unit length.
Both the metric and imperial version of the constant are given.
\(k_C = 0.0555pF/mm, \text{ or } 1.41 \times 10^{-3}pF/mil \)

\(h = \) separation between planes

\(d = \) diameter of via hole

\(d_1 = \) diameter of the pad surrounding the via

\(d_2 = \) distance to inner layer ground plane

\(\varepsilon_r = \) PCB dielectric constant (\(\varepsilon_r \approx 4.5 \text{ for FR-4} \))

Example

Calculate the total inductance and capacitance if \(h = 1.6mm, d = 0.4mm, d_1 = 0.8mm, \text{ and } d_2 = 1.5mm. \)

Answer

\[L(nH) = (0.2nH/mm) \cdot (1.6mm) \left[1 + \ln \left(\frac{4 \cdot 1.6mm}{0.4mm} \right) \right] = 1.2nH \]

\[C(pF) = \frac{(0.0555pF/mm) \cdot (4.5) \cdot (1.6mm) \cdot (0.8mm)}{1.5mm - 0.8mm} = 0.46pF \]

Example

Calculate the total inductance and capacitance if \(h = 63\text{mil}, d = 15.8\text{mil}, d_1 = 31.5\text{mil}, \text{ and } d_2 = 59\text{mil}. \)

Answer

\(L = 1.2nH, C = 0.46pF. \) Note: this is the same example as above with imperial units.
Table 20: Coaxial cable information

<table>
<thead>
<tr>
<th>Type</th>
<th>Z₀</th>
<th>Capacitance / length (pF/feet)</th>
<th>Outside diameter (inches)</th>
<th>dB attenuation /100 ft at 750 MHz</th>
<th>Dielectric type</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG-58</td>
<td>53.5Ω</td>
<td>28.8</td>
<td>0.195</td>
<td>13.1</td>
<td>PE</td>
<td>Test equipment and RF power to a few hundred watts, and a couple hundred MHz</td>
</tr>
<tr>
<td>RG-8</td>
<td>52Ω</td>
<td>29.6</td>
<td>0.405</td>
<td>5.96</td>
<td>PE</td>
<td>RF power to a few kW, up to several hundred MHz</td>
</tr>
<tr>
<td>RG-214/U</td>
<td>50Ω</td>
<td>30.8</td>
<td>0.425</td>
<td>6.7</td>
<td>PE</td>
<td>RF power to a few kW, up to several hundred MHz</td>
</tr>
<tr>
<td>9914</td>
<td>50Ω</td>
<td>26.0</td>
<td>0.405</td>
<td>4.0</td>
<td>PE</td>
<td>RF power to a few kW, up to several hundred MHz</td>
</tr>
<tr>
<td>RG-6</td>
<td>75Ω</td>
<td>20</td>
<td>0.270</td>
<td>5.6</td>
<td>PF</td>
<td>Video and CATV applications. RF to a few hundred watts, up to a few hundred MHz, sometimes to higher frequencies if losses can be tolerated.</td>
</tr>
<tr>
<td>RG-59/U</td>
<td>73Ω</td>
<td>29</td>
<td>0.242</td>
<td>9.7</td>
<td>PE</td>
<td>Video and CATV applications. RF to a few hundred watts, up to a few hundred MHz, sometimes to higher frequencies if losses can be tolerated.</td>
</tr>
<tr>
<td>RG-11/U</td>
<td>75Ω</td>
<td>17</td>
<td>0.412</td>
<td>3.65</td>
<td>PE</td>
<td>RF power to a few kW, up to several hundred MHz</td>
</tr>
<tr>
<td>RG-62/U</td>
<td>93Ω</td>
<td>13.5</td>
<td>0.242</td>
<td>7.1</td>
<td>ASP</td>
<td>Used in some test equipment and 100Ω video applications</td>
</tr>
<tr>
<td>RG-174</td>
<td>50Ω</td>
<td>31</td>
<td>0.100</td>
<td>23.5</td>
<td>PE</td>
<td>Miniature coax used primarily for test equipment interconnection. Usually short runs due to higher loss.</td>
</tr>
<tr>
<td>RG-178/U</td>
<td>50Ω</td>
<td>29</td>
<td>0.071</td>
<td>42.7</td>
<td>ST</td>
<td>Miniature coax used primarily for test equipment interconnection. Usually short runs due to higher loss.</td>
</tr>
</tbody>
</table>
Coaxial cable equations

\[
C = \frac{2\pi \varepsilon}{\ln \left(\frac{D}{d} \right)} \quad (161) \quad \text{Capacitance per length}
\]

\[
L = \frac{\mu}{2\pi} \ln \left(\frac{D}{d} \right) \quad (162) \quad \text{Inductance per length}
\]

\[
Z_0 = \sqrt{\frac{L}{C}} = \frac{1}{2\pi} \cdot \sqrt{\frac{\mu}{\varepsilon}} \cdot \ln \left(\frac{D}{d} \right) \quad (163) \quad \text{Characteristic impedance}
\]

Where

L = inductance in henries (H)
C = capacitance in farads (F)
Z = impedance in ohms (Ω)
d = diameter of inner conductor
D = inside diameter of shield, or diameter of dielectric insulator
\(\varepsilon\) = dielectric constant of insulator \((\varepsilon = \varepsilon_r \varepsilon_o)\)
\(\mu\) = magnetic permeability \((\mu = \mu_r \mu_o)\)
I = length of the cable

Figure 66: Coaxial cable cutaway
Table 21: Resistance per length for different wire types (AWG)

<table>
<thead>
<tr>
<th>AWG</th>
<th>Stds</th>
<th>Outside diameter</th>
<th>Area</th>
<th>DC resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>in</td>
<td>mm</td>
<td>circular mils</td>
</tr>
<tr>
<td>36</td>
<td>Solid</td>
<td>0.0050</td>
<td>0.127</td>
<td>25</td>
</tr>
<tr>
<td>36</td>
<td>7/44</td>
<td>0.0060</td>
<td>0.152</td>
<td>28</td>
</tr>
<tr>
<td>34</td>
<td>Solid</td>
<td>0.00630</td>
<td>0.160</td>
<td>39.7</td>
</tr>
<tr>
<td>34</td>
<td>7/42</td>
<td>0.00750</td>
<td>0.192</td>
<td>43.8</td>
</tr>
<tr>
<td>32</td>
<td>Solid</td>
<td>0.0080</td>
<td>0.203</td>
<td>67.3</td>
</tr>
<tr>
<td>32</td>
<td>7/40</td>
<td>0.0080</td>
<td>0.203</td>
<td>67.3</td>
</tr>
<tr>
<td>30</td>
<td>Solid</td>
<td>0.0100</td>
<td>0.254</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>7/38</td>
<td>0.0120</td>
<td>0.305</td>
<td>112</td>
</tr>
<tr>
<td>28</td>
<td>Solid</td>
<td>0.0130</td>
<td>0.330</td>
<td>159</td>
</tr>
<tr>
<td>28</td>
<td>7/36</td>
<td>0.0150</td>
<td>0.381</td>
<td>175</td>
</tr>
<tr>
<td>26</td>
<td>Solid</td>
<td>0.0160</td>
<td>0.409</td>
<td>256</td>
</tr>
<tr>
<td>26</td>
<td>10/36</td>
<td>0.0210</td>
<td>0.533</td>
<td>250</td>
</tr>
<tr>
<td>24</td>
<td>Solid</td>
<td>0.0200</td>
<td>0.511</td>
<td>404</td>
</tr>
<tr>
<td>24</td>
<td>7/32</td>
<td>0.0240</td>
<td>0.610</td>
<td>448</td>
</tr>
<tr>
<td>22</td>
<td>Solid</td>
<td>0.0250</td>
<td>0.643</td>
<td>640</td>
</tr>
<tr>
<td>22</td>
<td>7/30</td>
<td>0.0300</td>
<td>0.762</td>
<td>700</td>
</tr>
<tr>
<td>20</td>
<td>Solid</td>
<td>0.0320</td>
<td>0.813</td>
<td>1020</td>
</tr>
<tr>
<td>20</td>
<td>7/28</td>
<td>0.0380</td>
<td>0.965</td>
<td>1111</td>
</tr>
<tr>
<td>18</td>
<td>Solid</td>
<td>0.0400</td>
<td>1.020</td>
<td>1620</td>
</tr>
<tr>
<td>18</td>
<td>7/26</td>
<td>0.0480</td>
<td>1.219</td>
<td>1770</td>
</tr>
<tr>
<td>16</td>
<td>Solid</td>
<td>0.0510</td>
<td>1.290</td>
<td>2580</td>
</tr>
<tr>
<td>16</td>
<td>7/24</td>
<td>0.0600</td>
<td>1.524</td>
<td>2828</td>
</tr>
<tr>
<td>14</td>
<td>Solid</td>
<td>0.0640</td>
<td>1.630</td>
<td>4110</td>
</tr>
<tr>
<td>14</td>
<td>7/22</td>
<td>0.0730</td>
<td>1.854</td>
<td>4480</td>
</tr>
</tbody>
</table>
Table 22: Maximum current vs. AWG

<table>
<thead>
<tr>
<th>Wire gauge</th>
<th>Polyethylene</th>
<th>Neoprene</th>
<th>Polyvinylchloride (semi-ridged) at 80°C</th>
<th>Polyethylene</th>
<th>Polypropylene (high density) at 90°C</th>
<th>Polyvinylchloride Nylon at 105°C</th>
<th>Kynar</th>
<th>Polyethylene Thermoplastic at 125°C</th>
<th>Kapton</th>
<th>Teflon</th>
<th>Silicone at 200°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWG</td>
<td>I_{max} (A)</td>
<td>I_{max} (A)</td>
<td>I_{max} (A)</td>
<td>I_{max} (A)</td>
<td>I_{max} (A)</td>
<td>I_{max} (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>17</td>
<td>18</td>
<td>20</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>27</td>
<td>30</td>
<td>33</td>
<td>40</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>36</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td></td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>47</td>
<td>55</td>
<td>58</td>
<td>70</td>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table shows the current required to raise the temperature of a single insulated conductor in free air (30°C ambient) to the limits of various insulation types.

Example

What is the maximum current that can be applied to a 30 gauge Teflon wire in a room temperature environment? What will the self-heating be?

Answer

$I_{\text{max}} = 4$A
Wire temperature $= 200$°C
Sensor

- Thermistor
- Resistive temperature detector (RTD)
- Diode temperature characteristics
- Thermocouple (J and K)
Table 23: Temperature sensor overview

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Temp range</th>
<th>Cost</th>
<th>Accuracy</th>
<th>Linearity</th>
<th>Construction</th>
<th>Output range</th>
<th>Applications</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple</td>
<td>–250°C < T < 1800°C</td>
<td>Low</td>
<td>Good accuracy with polynomial correction</td>
<td>Fairly linear slope = (-2)mV/C</td>
<td>Most rugged</td>
<td>10s of millivolts</td>
<td>Industrial temperature measurement</td>
<td>Self-powered</td>
</tr>
<tr>
<td>Diode</td>
<td>–25°C < T < 150°C</td>
<td>Low</td>
<td>Poor accuracy without calibration</td>
<td>Relatively simple quadratic function</td>
<td>Rugged</td>
<td>0.4 to 0.8V</td>
<td>Low cost temperature monitor</td>
<td>Requires excitation</td>
</tr>
<tr>
<td>RTD</td>
<td>–200°C < T < 850°C</td>
<td>High</td>
<td>Excellent accuracy</td>
<td>Fairly linear</td>
<td>Depends on type (can be rugged)</td>
<td>18 to 390 Ω or PT100</td>
<td>Scientific and industrial</td>
<td>Requires excitation</td>
</tr>
<tr>
<td>Thermistor</td>
<td>–55°C < T < 150°C</td>
<td>Very low</td>
<td>Very accurate over full range</td>
<td>Very nonlinear</td>
<td>Less rugged</td>
<td>Typically 10s to 100s of KΩ</td>
<td>General purpose</td>
<td>Requires excitation</td>
</tr>
</tbody>
</table>

- **Temp range**
 - Thermocouple: –250°C < T < 1800°C
 - Diode: –25°C < T < 150°C
 - RTD: –200°C < T < 850°C
 - Thermistor: –55°C < T < 150°C

- **Cost**
 - Thermocouple: Low
 - Diode: Low
 - RTD: High
 - Thermistor: Very low

- **Accuracy**
 - Thermocouple: Good accuracy at one temperature
 - Diode: Poor accuracy without calibration
 - RTD: Excellent accuracy
 - Thermistor: Very accurate over full range

- **Linearity**
 - Thermocouple: Fairly linear
 - Diode: Relatively simple quadratic function
 - RTD: Fairly linear
 - Thermistor: Very nonlinear

- **Construction**
 - Thermocouple: Most rugged
 - Diode: Rugged
 - RTD: Depends on type (can be rugged)
 - Thermistor: Less rugged

- **Output range**
 - Thermocouple: 10s of millivolts
 - Diode: 0.4 to 0.8V
 - RTD: 18 to 390 Ω or PT100
 - Thermistor: Typically 10s to 100s of KΩ

- **Applications**
 - Thermocouple: Industrial temperature measurement
 - Diode: Low cost temperature monitor
 - RTD: Scientific and industrial
 - Thermistor: General purpose

- **General**
 - Thermocouple: Requires cold junction comp
 - Diode: Requires excitation
 - RTD: Requires excitation
 - Thermistor: Requires excitation
<table>
<thead>
<tr>
<th>Temp range</th>
<th>Diode</th>
<th>Analog IC temperature sensor</th>
<th>Digital IC temperature sensor</th>
<th>Temperature switch/thermostat</th>
</tr>
</thead>
<tbody>
<tr>
<td>-55°C < T < 150°C</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>Very low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Poor accuracy without calibration</td>
<td>Good device accuracy without calibration. Total $T_{error} \leq 0.13°C$.</td>
<td>Zero calibration required. Total T_{error} including ADC $\leq 0.1°C$.</td>
<td>Zero calibration required. Total T_{error} including comparator $\leq 0.1°C$.</td>
</tr>
<tr>
<td>Linearity</td>
<td>Fairly linear $\approx -2mV/°C$. Slope varies according to current excitation, diode type, and diode processing from $-5.5mV/°C$ to $+19.5mV/°C$.</td>
<td>Fairly linear. With analog sensors a variety of slope options in the range from $-5.5mV/°C$ to $+19.5mV/°C$.</td>
<td>Direct readout of temperature value. 8 to 16 bits of resolution.</td>
<td>Programmable temperature threshold</td>
</tr>
<tr>
<td>Construction</td>
<td>Rugged</td>
<td>Rugged</td>
<td>Rugged</td>
<td>Rugged</td>
</tr>
<tr>
<td>Output range</td>
<td>0.4V to 0.8V</td>
<td>0 to 3V for analog. Different output ranges for different devices.</td>
<td>Digital interfaces: I2C, SPI, UART</td>
<td>Active high or active low output</td>
</tr>
<tr>
<td>Applications</td>
<td>Low cost temperature monitor. Low cost linear response.</td>
<td>General purpose, industrial and automotive</td>
<td>General purpose, industrial and automotive</td>
<td>General purpose, industrial and automotive</td>
</tr>
<tr>
<td>General</td>
<td>Requires excitation</td>
<td>No external excitation required. Analog output normally directly connected to ADC.</td>
<td>Integrated temperature sensor and ADC/comparator. Options to measure remote diodes.</td>
<td>Resistor programmable, pin programmable, factory preset</td>
</tr>
</tbody>
</table>

Table 24: IC temperature sensor overview
RTD equation temperature to resistance \((T\geq 0°C\text{ and } T<0°C)\)

\[R_{RTD} = R_0 \left[1 + A_0 T + B_0 T^2 + C_0 (T - 100) T^3 \right]\] \hspace{1cm} (164) \text{ RTD resistance for } T<0°C

\[R_{RTD} = R_0 \left[1 + A_0 T + B_0 T^2 \right]\] \hspace{1cm} (165) \text{ RTD resistance for } T\geq 0°C

Where

\(R_{RTD}\) = resistance of RTD over temperature range of \((-200°C < T < 850°C)\)
\(R_0 = 100Ω\) for PT-100, \(1000Ω\) for PT-1000
\(A_0, B_0, C_0 = \text{Callendar-Van Dusen coefficients}\)
\(T = \text{temperature in degrees Celsius (°C)}\)

RTD equation resistance to temperature \((T\geq 0°C \text{ or } R_{RTD} \geq R_0)\)

\[T = \frac{-A_0 + \sqrt{A_0^2 - 4B_0 \left(1 - \frac{R_{RTD}}{R_0} \right)}}{2B_0}\] \hspace{1cm} (166) \text{ Temperature for } T\geq 0°C \text{ or } R_{RTD} \geq R_0

Where

\(R_{RTD}\) = resistance of RTD over temperature range of \((T\geq 0°C)\)
\(R_0 = 100Ω\) for PT-100, \(1000Ω\) for PT-1000
\(A_0, B_0, C_0 = \text{Callendar-Van Dusen coefficients}\)
\(T = \text{temperature in degrees Celsius (°C)}\)

Table 25: Callendar-Van Dusen coefficients for different RTD standards

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_0)</td>
<td>(+3.9083E-3)</td>
<td>(+3.9739E-3)</td>
<td>(+3.9787E-3)</td>
<td>(+3.9692E-3)</td>
<td>(+3.9888E-3)</td>
</tr>
<tr>
<td>(B_0)</td>
<td>(-5.775E-7)</td>
<td>(-5.870E-7)</td>
<td>(-5.8686E-7)</td>
<td>(-5.8495E-7)</td>
<td>(-5.915E-7)</td>
</tr>
<tr>
<td>(C_0)</td>
<td>(-4.183E-12)</td>
<td>(-4.4E-12)</td>
<td>(-4.167E-12)</td>
<td>(-4.233E-12)</td>
<td>(-3.85E-12)</td>
</tr>
</tbody>
</table>

Example

What is the temperature given an ITS-90 PT100 resistance of 120Ω?

Answer

\[T = \frac{-(3.9888 \cdot 10^{-3}) + \sqrt{(3.9888 \cdot 10^{-3})^2 - 4(-5.915 \cdot 10^{-7})(1 - \frac{120}{100})}}{2(-5.915 \cdot 10^{-7})} = 50.5°C\]
Sensor

RTD equation resistance to temperature (T < 0°C or $R_{RTD} < R_0$)

$$T = \sum_{i=0}^{n} \alpha_i (R_{RTD})^i$$ \hspace{1cm} (167) Temperature for T < 0°C or $R_{RTD} < R_0$

Where

T = temperature in degrees Celsius (°C)

R_{RTD} = resistance of RTD over temperature range of (T<0°C)

α_i = polynomial coefficients for converting RTD resistance to temperature for T<0°C

Table 26: Coefficients for 5th order RTD resistance to temperature

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>α_0</td>
<td>-2.420199E+02</td>
<td>-2.381987E+02</td>
<td>-2.38132E+02</td>
<td>-2.386381E+02</td>
<td>-2.379147E+02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_1</td>
<td>2.222812E+00</td>
<td>2.189835E+00</td>
<td>2.195550E+00</td>
<td>2.197285E+00</td>
<td>2.201058E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_2</td>
<td>2.585894E-03</td>
<td>2.522738E-03</td>
<td>2.441461E-03</td>
<td>2.480324E-03</td>
<td>2.322506E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_3</td>
<td>-4.825976E-06</td>
<td>-4.781625E-06</td>
<td>-4.751529E-06</td>
<td>-4.778784E-06</td>
<td>-4.628394E-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_4</td>
<td>-2.818583E-08</td>
<td>-2.704445E-08</td>
<td>-2.385758E-08</td>
<td>-2.518695E-08</td>
<td>-1.971986E-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_5</td>
<td>1.524399E-10</td>
<td>1.473912E-10</td>
<td>1.350936E-10</td>
<td>1.403820E-10</td>
<td>1.184331E-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example

Find the temperature given an ITS-90 PT100 resistance of 60 Ω.

Answer

$R=60$

$T=\left((-2.379147E+02) + (2.201058E+00) \cdot R + (2.322506E-03) \cdot R^2 + (-4.628394E-06) \cdot R^3 + (-1.971986E-08) \cdot R^4 + (1.184331E-10) \cdot R^5\right) \cdot -98.653°C$
Diode equation vs. temperature

\[V_D = \frac{n k T}{q} \ln \left(\frac{I}{I_S} + 1 \right) = \frac{n k T}{q} \ln \left(\frac{1}{I_S} \right) \] \hspace{1cm} (168) Diode voltage

Where

- \(V_D \) = diode voltage vs. temperature and current
- \(n \) = diode ideality factor (ranges from 1 to 2)
- \(k = 1.38 \times 10^{-23} \) J/K, Boltzmann’s constant
- \(T \) = temperature in Kelvin
- \(q = 1.60 \times 10^{-19} \) C, charge of an electron
- \(I \) = forward diode current in amps
- \(I_S \) = saturation current

\[I_S = \alpha T^{(3/n)} \exp \left(-\frac{q V_G}{n k T} \right) \] \hspace{1cm} (169) Saturation current

Where

- \(I_S \) = saturation current
- \(\alpha \) = constant related to the cross sectional area of the junction
- \(V_G \) = diode voltage vs. temperature and current
- \(n \) = diode ideality factor (ranges from 1 to 2)
- \(k = 1.38 \times 10^{-23} \) J/K, Boltzmann’s constant
- \(T \) = temperature in Kelvin
- \(q = 1.60 \times 10^{-19} \) C, charge of an electron
Diode voltage versus temperature

Figure 67 shows an example of the temperature drift for a diode. Depending on the characteristics of the diode and the forward current, the slope and offset of this curve will change. However, typical diode drift is about \(-2\text{mV/°C}\). A forward drop of about 0.6V is typical for room temperature.

![Figure 67: Diode voltage drop vs. temperature](image-url)
Type J thermocouples translating temperature to voltage
(ITS-90 standard)

\[V_T = \sum_{i=0}^{n} c_i (T)^i \]

(170) Thermoelectric voltage

Where

\(V_T \) = thermoelectric voltage

\(T \) = temperature in degrees Celsius

\(c_i \) = translation coefficients

Table 27: Type J thermocouple temperature to voltage coefficients

<table>
<thead>
<tr>
<th>Temperature</th>
<th>(-219^\circ\text{C} to 760^\circ\text{C})</th>
<th>(760^\circ\text{C} to 1,200^\circ\text{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_0)</td>
<td>0.0000000000E+00</td>
<td>2.9645625681E+05</td>
</tr>
<tr>
<td>(c_1)</td>
<td>5.0381187815E+01</td>
<td>-1.4976127786E+03</td>
</tr>
<tr>
<td>(c_2)</td>
<td>3.0475836930E-02</td>
<td>3.1787103924E+00</td>
</tr>
<tr>
<td>(c_3)</td>
<td>-8.5681065720E-05</td>
<td>-3.1847686701E-03</td>
</tr>
<tr>
<td>(c_4)</td>
<td>1.3228195295E-07</td>
<td>1.5720819004E-06</td>
</tr>
<tr>
<td>(c_5)</td>
<td>-1.7052958337E-10</td>
<td>-3.0691369056E-10</td>
</tr>
<tr>
<td>(c_6)</td>
<td>2.0948090967E-13</td>
<td>—</td>
</tr>
<tr>
<td>(c_7)</td>
<td>-1.2538395336E-16</td>
<td>—</td>
</tr>
<tr>
<td>(c_8)</td>
<td>1.5631725697E-20</td>
<td>—</td>
</tr>
</tbody>
</table>
Type J thermocouples translating voltage to temperature (ITS-90 standard)

\[T = \sum_{i=0}^{n} c_i (V_i)^i \]

(171) Temperature

Table 28: Type J thermocouple voltage to temperature coefficients

<table>
<thead>
<tr>
<th>Temperature</th>
<th>~219°C to 0°C</th>
<th>0°C to 760°C</th>
<th>760°C to 1,200°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>-8.095mV to 0V</td>
<td>0V to 42.919mV</td>
<td>42.919mV to 69.553mV</td>
</tr>
<tr>
<td>c0</td>
<td>0.00000000E+00</td>
<td>0.00000000E+00</td>
<td>-3.11358187E+03</td>
</tr>
<tr>
<td>c1</td>
<td>1.95282680E-02</td>
<td>1.97842500E-02</td>
<td>3.00543684E-01</td>
</tr>
<tr>
<td>c2</td>
<td>-1.22861850E-06</td>
<td>-2.00120400E-07</td>
<td>-9.94773230E-06</td>
</tr>
<tr>
<td>c3</td>
<td>-1.07521780E-09</td>
<td>1.03696900E-11</td>
<td>1.70276630E-10</td>
</tr>
<tr>
<td>c4</td>
<td>-5.90869330E-13</td>
<td>-2.54968700E-16</td>
<td>-1.43033468E-15</td>
</tr>
<tr>
<td>c5</td>
<td>-1.72567130E-16</td>
<td>3.58515300E-21</td>
<td>4.73886084E-21</td>
</tr>
<tr>
<td>c6</td>
<td>-2.81315130E-20</td>
<td>-5.34428500E-26</td>
<td></td>
</tr>
<tr>
<td>c7</td>
<td>-2.39633700E-24</td>
<td>5.09989000E-31</td>
<td></td>
</tr>
<tr>
<td>c8</td>
<td>-8.38233210E-29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Type K thermocouples translating temperature to voltage
(ITS-90 standard)

\[V_T = \sum_{i=0}^{n} c_i(T)^i \]
(172) Thermoelectric voltage for \(T<0^\circ C \)

\[V_T = \left[\sum_{i=0}^{n} c_i(T)^i \right] + \alpha_0 e^{[\alpha_1(T-126.9686)]^2} \]
(173) Thermoelectric voltage for \(T>0^\circ C \)

Where

\(V_T \) = thermoelectric voltage
\(T \) = temperature in degrees Celsius
\(c_i \) = translation coefficients
\(\alpha_0, \alpha_1 \) = translation coefficients

Table 29: Type K thermocouple temperature to voltage coefficients

<table>
<thead>
<tr>
<th>Temperature</th>
<th>-270°C to 0°C</th>
<th>0°C to 1,372°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_0)</td>
<td>0.0000000000E+00</td>
<td>-1.7600413686E+01</td>
</tr>
<tr>
<td>(c_1)</td>
<td>3.9450128025E+01</td>
<td>3.8921204975E+01</td>
</tr>
<tr>
<td>(c_2)</td>
<td>2.3622373598E-02</td>
<td>1.855770032E-02</td>
</tr>
<tr>
<td>(c_3)</td>
<td>-3.2858906784E-04</td>
<td>-9.9457592874E-05</td>
</tr>
<tr>
<td>(c_4)</td>
<td>-4.9904827777E-06</td>
<td>3.1840945719E-07</td>
</tr>
<tr>
<td>(c_5)</td>
<td>-6.7509059173E-08</td>
<td>-5.6072844889E-10</td>
</tr>
<tr>
<td>(c_6)</td>
<td>-5.7410327428E-10</td>
<td>5.607509059E-13</td>
</tr>
<tr>
<td>(c_7)</td>
<td>-3.108872894E-12</td>
<td>-3.2020720003E-16</td>
</tr>
<tr>
<td>(c_8)</td>
<td>-1.0451609365E-14</td>
<td>9.7151147152E-20</td>
</tr>
<tr>
<td>(c_9)</td>
<td>-1.9889266878E-17</td>
<td>-1.2104721275E-23</td>
</tr>
<tr>
<td>(c_{10})</td>
<td>-1.6322697486E-20</td>
<td>—</td>
</tr>
<tr>
<td>(\alpha_0)</td>
<td>—</td>
<td>1.1859760000E+02</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>—</td>
<td>-1.1834320000E-04</td>
</tr>
</tbody>
</table>
Type K thermocouples translating voltage to temperature (ITS-90 standard)

\[T = \sum_{i=0}^{n} c_i (V_i)^i \]

(174) Temperature

Table 30: Type K thermocouple voltage to temperature coefficients

<table>
<thead>
<tr>
<th>Temperature</th>
<th>-200°C to 0°C</th>
<th>0°C to 500°C</th>
<th>500°C to 1,372°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>5.891mV to 0V</td>
<td>0V to 20.644mV</td>
<td>20.644mV to 54.886mV</td>
</tr>
<tr>
<td>C0</td>
<td>0.0000000E+00</td>
<td>0.0000000E+00</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>C1</td>
<td>2.5173462E-02</td>
<td>2.5083550E-02</td>
<td>4.83022E-02</td>
</tr>
<tr>
<td>C2</td>
<td>-1.1662878E-06</td>
<td>7.8601060E-08</td>
<td>-1.646031E-06</td>
</tr>
<tr>
<td>C3</td>
<td>-1.0833638E-09</td>
<td>-2.503131E-10</td>
<td>5.4647310E-11</td>
</tr>
<tr>
<td>C4</td>
<td>-8.9773540E-13</td>
<td>8.3152700E-14</td>
<td>-9.650715E-16</td>
</tr>
<tr>
<td>C5</td>
<td>-3.7342377E-16</td>
<td>-1.228034E-17</td>
<td>8.802193E-21</td>
</tr>
<tr>
<td>C6</td>
<td>-8.6632643E-20</td>
<td>9.8040360E-22</td>
<td>-3.11081E-18</td>
</tr>
<tr>
<td>C7</td>
<td>-1.0450598E-23</td>
<td>-4.413030E-26</td>
<td>—</td>
</tr>
<tr>
<td>C8</td>
<td>-5.1920577E-28</td>
<td>1.0577340E-30</td>
<td>—</td>
</tr>
<tr>
<td>C9</td>
<td>—</td>
<td>-1.0527550E-35</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 31: Seebeck coefficients for different material

<table>
<thead>
<tr>
<th>Material</th>
<th>Seebeck coefficient</th>
<th>Material</th>
<th>Seebeck coefficient</th>
<th>Material</th>
<th>Seebeck coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>4</td>
<td>Gold</td>
<td>6.5</td>
<td>Rhodium</td>
<td>6</td>
</tr>
<tr>
<td>Antimony</td>
<td>47</td>
<td>Iron</td>
<td>19</td>
<td>Selenium</td>
<td>900</td>
</tr>
<tr>
<td>Bismuth</td>
<td>-72</td>
<td>Lead</td>
<td>4</td>
<td>Silicon</td>
<td>440</td>
</tr>
<tr>
<td>Cadmium</td>
<td>7.5</td>
<td>Mercury</td>
<td>0.6</td>
<td>Silver</td>
<td>6.5</td>
</tr>
<tr>
<td>Carbon</td>
<td>3</td>
<td>Nichrome</td>
<td>25</td>
<td>Sodium</td>
<td>-2.0</td>
</tr>
<tr>
<td>Constantan</td>
<td>-35</td>
<td>Nickel</td>
<td>-15</td>
<td>Tantalum</td>
<td>4.5</td>
</tr>
<tr>
<td>Copper</td>
<td>6.5</td>
<td>Platinum</td>
<td>0</td>
<td>Tellurium</td>
<td>500</td>
</tr>
<tr>
<td>Germanium</td>
<td>300</td>
<td>Potassium</td>
<td>-9.0</td>
<td>Tungsten</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Note: Units are μV/°C. All data at temperature of 0°C.
Thermistor: Resistance to temperature, Steinhart-Hart equation

\[
\frac{1}{T} = a + b \ln(R) + c \left[\ln(R) \right]^3 \tag{175}
\]

Convert resistance to temperature for a thermistor

Where

\(T \) = temperature in Kelvin
\(a, b, c \) = Steinhart-Hart equation constants
\(R \) = resistance in ohms

Thermistor: Temperature to resistance, Steinhart-Hart equation

\[
R = \exp \left[\left(y - \frac{x}{2} \right)^3 - \left(y + \frac{x}{2} \right)^3 \right] \tag{176}
\]

Convert temperature to resistance for a thermistor

\[
x = \frac{a - \frac{1}{T}}{c} \tag{177}
\]

Factor used in Equation 165

\[
y = \sqrt{\left(\frac{b}{3c} \right)^3 + \frac{x^2}{4}} \tag{178}
\]

Factor used in Equation 165

Where

\(R \) = resistance in \(\Omega \)
\(T \) = temperature in Kelvin
\(a, b, c \) = Steinhart-Hart equation constants
\(x, y \) = Steinhart-Hart factors used in temperature to resistance equation
Digital

- Binary/hex conversions
- Digital logic thresholds
- Serial peripheral interface
- Inter-integrated circuit (I²C) bus

![I²C Bus Diagram]

- SDA: Serial Data Line
- SCL: Serial Clock Line
- MSB: Most Significant Bit
- LSB: Least Significant Bit
- Start: start condition
- Stop: stop condition
- ACK: acknowledge
- VDD: power supply
- Rpull: pull-up resistor
- Parasitic Bus Capacitance
- tSU: Start Time
- tHO: High Time
- SDI: Serial Data Input
- Logic
- Slave or Master

123456789

MSB MSB MSB MSB MSB LS ACK

-1 -2 -3 -4 -5 -6 8 1

1100110 1
Numbering systems: Binary, decimal, and hexadecimal

<table>
<thead>
<tr>
<th>Binary (Base-2)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal (Base-10)</td>
<td>0 1 2 3 4 5 6 7 8 9</td>
<td></td>
</tr>
<tr>
<td>Hexadecimal (Base-16)</td>
<td>0 1 2 3 4 5 6 7 8 9 A B C D E F</td>
<td></td>
</tr>
</tbody>
</table>

Example conversion: Binary to decimal

Binary

<table>
<thead>
<tr>
<th>x8</th>
<th>x4</th>
<th>x2</th>
<th>x1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Decimal

\[8 + 4 + 0 + 1 \]

Example conversion: Decimal to binary

Decimal

<table>
<thead>
<tr>
<th>236</th>
<th>R=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td>R=0</td>
</tr>
<tr>
<td>59</td>
<td>R=1</td>
</tr>
<tr>
<td>29</td>
<td>R=1</td>
</tr>
<tr>
<td>14</td>
<td>R=0</td>
</tr>
<tr>
<td>7</td>
<td>R=1</td>
</tr>
<tr>
<td>3</td>
<td>R=1</td>
</tr>
<tr>
<td>1</td>
<td>R=1</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Binary

\[1 1 1 0 1 1 0 0 \]

\(128 + 64 + 32 + 8 + 4 = 236 \)

LSD = Least significant digit
MSD = Most significant digit
Numbering systems: Binary, decimal, and hexadecimal (cont.)

Example conversion: Binary to hexadecimal

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hexadecimal Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>110110001</td>
<td>128 + 64 + 16 + 8 + 1 = 217</td>
</tr>
<tr>
<td>MSD</td>
<td>LSD</td>
</tr>
</tbody>
</table>

Example conversion: Hexadecimal to decimal and decimal to hexadecimal

<table>
<thead>
<tr>
<th>Hexadecimal (Base-16)</th>
<th>Decimal (Base-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 A B C D E F</td>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hexadecimal</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 6 AF</td>
<td>9903</td>
</tr>
</tbody>
</table>

2(4096) + 6(256) + 10(16) + 15(1) = 9903

LSD = Least significant digit
MSD = Most significant digit
Data formats

Table 32: Different data formats

<table>
<thead>
<tr>
<th>Code</th>
<th>Straight binary</th>
<th>Offset binary</th>
<th>2’s complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>Decimal value</td>
<td>Decimal value</td>
<td>Decimal value</td>
</tr>
<tr>
<td>11111111</td>
<td>255</td>
<td>127</td>
<td>–1</td>
</tr>
<tr>
<td>11000000</td>
<td>192</td>
<td>64</td>
<td>–64</td>
</tr>
<tr>
<td>10000000</td>
<td>128</td>
<td>0</td>
<td>–128</td>
</tr>
<tr>
<td>01111111</td>
<td>127</td>
<td>–1</td>
<td>127</td>
</tr>
<tr>
<td>01000000</td>
<td>64</td>
<td>–64</td>
<td>64</td>
</tr>
<tr>
<td>00000000</td>
<td>0</td>
<td>–128</td>
<td>0</td>
</tr>
</tbody>
</table>

Converting two’s complement to decimal:
Negative number example

Step 1: Check sign bit (this case is negative)

Step 2: Invert all bits

Step 3: Add 1

Final result

\[-(4 + 1) = -5 \]

Converting two’s complement to decimal:
Positive number example

Just add bit weights

Final result

\[4 + 1 = 5 \]
Digital logic thresholds

Input logic thresholds = the voltage range a logic device will sense a logic high or low as specified in the data sheet. Applying an input voltage outside of this range to the device will have unpredictable results.

Output logic thresholds = the output voltage range of a logic device driving a logic high or low as specified in the data sheet. The output level range is normally specified with current loads (sourcing for logic high and sinking for logic low).

![Input 5V CMOS logic thresholds](image1)

![Output 5V CMOS logic levels](image2)

Figure 68: Valid input logic levels for 5V CMOS
Table 33: CMOS logic thresholds

<table>
<thead>
<tr>
<th></th>
<th>5V CMOS</th>
<th>3.3V CMOS</th>
<th>2.5V CMOS</th>
<th>1.8V CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>5.0</td>
<td>3.3</td>
<td>2.5</td>
<td>1.8</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>4.5</td>
<td>0.9·V_{CC}</td>
<td>2.97</td>
<td>0.9·V_{CC}</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>3.5</td>
<td>0.7·V_{CC}</td>
<td>2.31</td>
<td>0.7·V_{CC}</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>1.5</td>
<td>0.3·V_{CC}</td>
<td>0.99</td>
<td>0.3·V_{CC}</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>0.5</td>
<td>0.1·V_{CC}</td>
<td>0.33</td>
<td>0.1·V_{CC}</td>
</tr>
<tr>
<td>GND</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 34: TTL logic thresholds

<table>
<thead>
<tr>
<th></th>
<th>5V TTL</th>
<th>3.3V LVTTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>5.0</td>
<td>3.3</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>GND</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Where

- V_{CC} and GND = supply voltage and ground for the device
- V_{OH} = minimum output logic high level
- V_{IH} = minimum input high logic level
- V_{IL} = maximum input logic low level
- V_{OL} = maximum output logic low level
SPI bus (Serial Peripheral Interface) hardware overview

- In SPI interfaces the master can connect to one or more slave devices
- In cases when multiple slave devices are used, the master will use multiple chip select (CS) lines

![SPI Master and Slave Configurations](image)

Figure 69: SPI master and slave configurations

Data and control lines

CS (chip select) = sometimes referred to as slave select. CS is driven by the master and arbitrates over the SPI bus. When driven low, the SPI bus is active.

SDO/SDI (serial data in and serial data out) = these names describe data flow for the device. The system names describe the data flow relationship between the master and slave. System names: MOSI = Master Out Slave In and MISO = Master In Slave Out. Example: SDO on a slave is MISO in the system and SDI is MOSI in the system.

SCLK (serial clock) = this is a square wave driven by the SPI master. Data on SDO and SDI have relative timing to the SCLK signal which controls the latching of the data on the SPI bus.
SPI data latching

- SPI data is latched on the rising or falling edge of SCLK
- The edge data is latched on is called the critical edge
- The figure below illustrates latching logic 1 on rising edge and logic 0 on falling edge

![Figure 70: SPI SCLK critical edge](image)

SPI read sequence example

1. Critical edge is rising edge
2. Master output writing to slave (SDI label relative to slave device)
3. The active low CS pin is driven low to 0V, activating the slave SPI bus
4. Data is clocked in from MSB to LSB on the rising edge of SCLK
5. Completed SPI transaction data is binary 1011001

![Figure 71: Example SPI write sequence](image)
SPI critical edge

t_{SU} (setup time) = defines how long before the critical edge that the data on SDI must already be set and settled.

t_{HO} (hold time) = defines how long after the critical edge data must be maintained on SDI.

t_{DO} (delay time) = defines the delay before data is valid after the critical edge for SDO.

Violation of any timing requirement could result in corruption of data.

The timing parameters, t_{SU}, t_{HO} and t_{DO}, are defined relative to the critical edge. In the example below for SDI the rising edge of SCLK is the critical edge and for SDO the falling edge of SCLK is the critical edge.

![Figure 72: Setup and hold timing illustration](image_url)
SPI modes

CPHA (clock phase) = defines which edge data is latched on, a 0 representing the first edge and a 1 representing the second edge.

CPOL (clock polarity) = defines whether the clock idles high or low in between SPI frames. CPOL = 0 idles low, CPOL = 1 idles high.

Figure 73: SPI modes of operation

<table>
<thead>
<tr>
<th>Mode</th>
<th>CPOL</th>
<th>CPHA</th>
<th>Critical edge</th>
<th>Clock phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Rising edge</td>
<td>Idles low</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Falling edge</td>
<td>Idles low</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>Rising edge</td>
<td>Idles high</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>Falling edge</td>
<td>Idles high</td>
</tr>
</tbody>
</table>
I²C bus (Inter-Integrated Circuit) hardware overview

- On I²C buses the master can connect to one or more slave devices
- The slave is selected by its I²C address. This allows one controller to connect to many slaves on the two-wire bus.

Data and control lines

SCL (serial clock) = this is a square wave driven by the master that controls how fast data is sent and when data is latched to the slave device(s)

SDA (serial data) = both master and slave place data on this line in sync with the clock pulses in a half-duplex fashion. Data on this line includes address, control, and communication data.
I²C addressing

- Typical addressing in I²C is 7-bit addressing with an additional bit for read or write indication
- Each device on the I²C bus must have a unique address
- Duplicate addresses will result in communication errors
- Some devices may have pin programmable I²C addresses

Address byte

<table>
<thead>
<tr>
<th>MSB</th>
<th></th>
<th></th>
<th></th>
<th>LSB</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 75: I²C addressing

[Diagram showing I²C connections and timing diagram]
I\(^2\)C communication

START = initiated by the master pulling SDA low while SCL is high

STOP = initiated by the master releasing the SDA pin high while SCL is high

ACK (acknowledge) = each transfer in I\(^2\)C is a single byte or 8-bits, with one SCL pulse per bit. The 9th pulse in each exchange is reserved for an acknowledgement signal from the slave, or an ACK signal. The ACK signal indicates that the previous transfer was successful.

Example I\(^2\)C write sequence:
1. The master pulls down SDA to generate a START condition
2. The first bit is set up and the master pulls down and releases SCL to clock data into the DAC
3. On the 9th bit the master does not pull down SDA. If the slave pulls down SDA the 8-bit transaction is acknowledged.
4. The completed transaction in binary is 11001101

![Figure 76: Complete I\(^2\)C transaction](image-url)
I²C communication (cont.)

For valid data transfer:

- SDA must remain stable the entire time that SCL is high for a bit transfer to be valid
- SDA is only allowed to transition in between SCL pulses when SCL is low
- Instances where SDA changes while SCL is high are interpreted as START, RESTART, or STOP conditions

![I²C data transfer diagram](image)

Figure 77: I²C data transfer
I²C interface circuitry and rise/fall timing

The figure below illustrates the internal structure for an I²C SCL or SDA pin. The transistor will turn on for logic low discharging C_b to logic low. The transistor will turn off for a logic high and the pull-up, R_{pull}, will charge C_b to a logic high.

t_r (rise time) = the maximum amount of time for the signal to transition from logic low to logic high. Since I²C data is an open drain signal, rise time is set by the RC time constant of the pull-up resistance and the bus capacitance.

t_f (fall time) = the maximum amount of time for the signal to transition from logic high to logic low
\(R_{\text{Pull}(\text{Min})} = \frac{(V_{DD} - V_{OL\text{MAX}})}{I_{\text{SinkMax}}} \)

(179) Minimum \(I^2C \) pull-up resistance

\(R_{\text{Pull}(\text{Max})} = \frac{t_r}{(0.8473 \times C_b)} \)

(180) Maximum \(I^2C \) pull-up resistance

Where

\(R_{\text{Pull}(\text{Min})} \) = this is the minimum pull-up resistance. This will give the shortest rise time. Using a pull-up smaller than this will draw too much current when the output transistor is on (logic low) and violate the maximum logic low output specification.

\(R_{\text{Pull}(\text{Max})} \) = maximum pull-up resistance. This will give the longest rise time. Using a pull-up resistance larger than this will violate timing requirements.

\(V_{DD} \) = supply voltage

\(V_{OL\text{MAX}} \) = maximum logic low output found in device data sheet. Typically 0.4V.

\(I_{\text{SinkMax}} \) = maximum sink current when the output transistor is on (logic low) found in device data sheet. Typically 3mA.

\(C_b \) = bus capacitance. Depends on width and length of PCB trace (see equation 155), and the capacitance of the devices connected to the bus.

Example

Find a pull-up resistor for: \(V_{DD} = 5V \), \(V_{OL\text{MAX}} = 0.4V \), \(t_r = 300\text{ns} \), and \(C_b = 100\text{pF} \).

Answer

\(R_{\text{Pull}(\text{Min})} = \frac{(V_{DD} - V_{OL\text{MAX}})}{I_{\text{SinkMax}}} = \frac{(5V - 0.4V)}{0.003A} = 1.53\text{k}\Omega \)

\(R_{\text{Pull}(\text{Max})} = \frac{t_r}{(0.8473 \times C_b)} = \frac{300\text{ns}}{0.8473 \times 100\text{pF}} = 3.54\text{k}\Omega \)

\(R_{\text{Pull}} = 2\text{k}\Omega \) Selected as a standard value between \(R_{\text{Pull}(\text{Min})} \) and \(R_{\text{Pull}(\text{Max})} \)
ADC

- ADC transfer function
- Quantization error
- Signal-to-noise ratio (SNR)
- Signal-to-noise and distortion (SINAD)
- Total harmonic distortion (THD)
- Effective number of bits (ENOB)
- Noise-free resolution and effective resolution
ADC definitions

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution = n</td>
<td>The number of bits used to quantify the input</td>
</tr>
<tr>
<td>Number of codes = 2^n</td>
<td>The number of output code combinations</td>
</tr>
<tr>
<td>Full-scale range input = FSR</td>
<td>Sets the converter input range and the LSB voltage</td>
</tr>
<tr>
<td>$\text{LSB} = \frac{\text{FSR}}{2^n}$</td>
<td>The voltage step size of each LSB</td>
</tr>
<tr>
<td>Full-scale input voltage = $(2^n - 1) \cdot 1\text{LSB}$</td>
<td>Full-scale input voltage of the ADC</td>
</tr>
<tr>
<td>Full-scale output code = $2^n - 1$</td>
<td>Largest code that can be read</td>
</tr>
<tr>
<td>Transfer function: Output Code = round $\left(\frac{V_{\text{IN}}}{\text{FSR}/2^n}\right)$</td>
<td>Relationship between input voltage and output code</td>
</tr>
</tbody>
</table>

Figure 80: ADC transfer function
ADC resolution for unipolar

![Diagram of A/D converter with PGA](https://ti.com/precisionlabs)

Figure 81: ADC full-scale range (FSR) unipolar

Full-scale range (FSR) unipolar

\[
\text{FSR} = \frac{V_{\text{REF}}}{\text{PGA}} \quad (181) \text{ Full-scale range}
\]

\[
1\text{LSB} = \frac{\text{FSR}}{2^n} \quad (182) \text{ One least significant bit}
\]

Where

- FSR = full-scale range
- PGA = PGA gain
- 1LSB = one least significant bit or resolution of the data converter
- \(n \) = resolution number of bits
- \(V_{\text{REF}} \) = reference voltage

Example calculation for the circuit above

\[
\text{FSR} = \frac{V_{\text{REF}}}{\text{PGA}} = \frac{5\text{V}}{2} = 2.5\text{V}
\]

\[
1\text{LSB} = \frac{\text{FSR}}{2^n} = \frac{2.5\text{V}}{2^{12}} = 610.35\mu\text{V}
\]
ADC resolution for bipolar

Full-scale range (FSR) bipolar

\[FSR = \frac{V_{REF}}{PGA} \quad (183) \text{ Full-scale range} \]

\[1\text{LSB} = \frac{FSR}{2^n} \quad (184) \text{ One least significant bit} \]

Where

- FSR = full-scale range
- PGA = PGA gain
- 1LSB = one least significant bit or resolution of the data converter
- \(n \) = resolution number of bits
- \(V_{REF} \) = reference voltage

Example calculation for the circuit above

\[FSR = \frac{\pm V_{REF}}{PGA} = \frac{\pm 2.5V}{2} = \pm 1.25V \Rightarrow 2.5V \]

\[1\text{LSB} = \frac{FSR}{2^n} = \frac{2.5V}{2^{12}} = 610.35\mu V \]
Resolution voltage vs. full-scale range

Table 35: LSB voltage vs. resolution and reference voltage

<table>
<thead>
<tr>
<th>Resolution</th>
<th>1.024V</th>
<th>1.25V</th>
<th>2.048V</th>
<th>2.5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4 mV</td>
<td>4.88 mV</td>
<td>8 mV</td>
<td>9.76 mV</td>
</tr>
<tr>
<td>10</td>
<td>1 mV</td>
<td>1.22 mV</td>
<td>2 mV</td>
<td>2.44 mV</td>
</tr>
<tr>
<td>12</td>
<td>250 µV</td>
<td>305 µV</td>
<td>500 µV</td>
<td>610 µV</td>
</tr>
<tr>
<td>14</td>
<td>52.5 µV</td>
<td>76.3 µV</td>
<td>125 µV</td>
<td>152.5 µV</td>
</tr>
<tr>
<td>16</td>
<td>15.6 µV</td>
<td>19.1 µV</td>
<td>31.2 µV</td>
<td>38.14 µV</td>
</tr>
<tr>
<td>18</td>
<td>3.91 µV</td>
<td>4.77 µV</td>
<td>7.81 µV</td>
<td>9.53 µV</td>
</tr>
<tr>
<td>20</td>
<td>0.98 µV</td>
<td>1.19 µV</td>
<td>1.95 µV</td>
<td>2.384 µV</td>
</tr>
<tr>
<td>22</td>
<td>244 nV</td>
<td>299 nV</td>
<td>488 nV</td>
<td>596 nV</td>
</tr>
<tr>
<td>24</td>
<td>61 nV</td>
<td>74.5 nV</td>
<td>122 nV</td>
<td>149 nV</td>
</tr>
</tbody>
</table>

Table 36: LSB voltage vs. resolution and reference voltage

<table>
<thead>
<tr>
<th>Resolution</th>
<th>3V</th>
<th>3.3V</th>
<th>4.096V</th>
<th>5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>11.7 mV</td>
<td>12.9 mV</td>
<td>16 mV</td>
<td>19.5 mV</td>
</tr>
<tr>
<td>10</td>
<td>2.93 mV</td>
<td>3.222 mV</td>
<td>4 mV</td>
<td>4.882 mV</td>
</tr>
<tr>
<td>12</td>
<td>732 µV</td>
<td>806 µV</td>
<td>1 mV</td>
<td>1.221 mV</td>
</tr>
<tr>
<td>14</td>
<td>183 µV</td>
<td>201 µV</td>
<td>250 µV</td>
<td>305 µV</td>
</tr>
<tr>
<td>16</td>
<td>45.77 µV</td>
<td>50.35 µV</td>
<td>62.5 µV</td>
<td>76.29 µV</td>
</tr>
<tr>
<td>18</td>
<td>11.44 µV</td>
<td>12.58 µV</td>
<td>15.6 µV</td>
<td>19.07 µV</td>
</tr>
<tr>
<td>20</td>
<td>2.861 µV</td>
<td>3.147 µV</td>
<td>3.91 µV</td>
<td>4.768 µV</td>
</tr>
<tr>
<td>22</td>
<td>715 nV</td>
<td>787 nV</td>
<td>976 nV</td>
<td>1.192 µV</td>
</tr>
<tr>
<td>24</td>
<td>179 nV</td>
<td>196 nV</td>
<td>244 nV</td>
<td>298 nV</td>
</tr>
</tbody>
</table>
Quantization error of ADC

The error introduced as a result of the quantization process. The amount of this error is a function of the resolution of the converter. The quantization error of an ADC converter is ½ LSB. The quantization error signal is the difference between the actual voltage applied and the ADC output (Figure 83). The RMS of the quantization signal is $1\text{LSB}/\sqrt{12}$.

![Figure 83: Quantization error of an ADC converter](image_url)
Signal-to-noise ratio (SNR) from quantization noise only

\[\text{MaxRMSSignal} = \frac{\text{FSR}}{\sqrt{2}} = \frac{1\text{ LSB} \times 2^{N-1}}{\sqrt{2}} \]
(185)

\[\text{RMSNoise} = \frac{1\text{ LSB}}{\sqrt{12}} \text{ from quantization only} \]
(186)

\[\text{SNR} = \frac{\text{MaxRMSSignal}}{\text{RMSNoise}} = \frac{1\text{ LSB} \times 2^{N-1} / \sqrt{2}}{1\text{ LSB} / \sqrt{12}} = 2^{N-1} \sqrt{6} \]
(187)

\[\text{SNR(dB)} = 20\log(\text{SNR}) = 20\log(2)N + 20\log\left(\frac{\sqrt{6}}{2}\right) \]
(188)

\[\text{SNR(dB)} \approx 6.02N + 1.76 \]
(189)

Where

FSR = full-scale range of the ADC converter
1LSB = the voltage of 1LSB, \(V_{\text{REF}}/2^n \)
N = the resolution of the ADC converter
MaxRMSSignal = the RMS equivalent of the ADC’s full-scale input
RMSNoise = the RMS noise from quantization
SNR = the ratio of RMS signal to RMS noise

Example

What is the SNR for an 8-bit ADC converter with 5V reference, assuming only quantization noise?

Answer

SNR = \(2^{8-1} \sqrt{6} = 2^7 \sqrt{6} = 314 \)
SNR(dB) = 20\log(314) = 49.9 dB
SNR(dB) = 6.02(8) + 1.76 = 49.9 dB
Total harmonic distortion (V_{RMS})

$$\text{THD}(\%) = \left(\frac{\text{RMSDistortion}}{\text{MaxRMSSignal}} \right) \cdot 100 = \frac{\sqrt{V_2^2 + V_3^2 + V_4^2 + \ldots + V_n^2}}{V_1} \cdot 100 \quad (190)$$

$$\text{THD (dB)} = 20 \log \left(\frac{\text{RMSDistortion}}{\text{MaxRMSSignal}} \right) \quad (191)$$

Where

THD = Total Harmonic Distortion, the ratio of the RMS distortion to the RMS signal

RMSDistortion = the RMS sum of all harmonic components

MaxRMSSignal = the RMS value of the input signal

$V_1 =$ the fundamental, generally the input signal

$V_2, V_3, V_4, \ldots V_n =$ harmonics of the fundamental

Figure 84: Fundamental and harmonics in V_{RMS}
Total harmonic distortion (dBc)

\[
THD_{\text{dBc}} = 10 \log \left[10^\left(\frac{D_2}{10}\right) + 10^\left(\frac{D_3}{10}\right) + 10^\left(\frac{D_4}{10}\right) + \ldots + 10^\left(\frac{D_n}{10}\right) \right]
\]

(192)

Where

THD = Total Harmonic Distortion. The ratio of the RMS distortion to the RMS signal.

\(D_1\) = the fundamental, generally the input signal. This is normalized to 0 dBc.

\(D_2, D_3, D_4, \ldots D_n\) = harmonics of the fundamental measured relative to the fundamental.

Example

Determine THD for the example above.

Answer

\[
THD_{\text{dBc}} = 10 \log \left[10^\left(\frac{-92}{10}\right) + 10^\left(\frac{-75}{10}\right) + 10^\left(\frac{-95}{10}\right) + \ldots + 10^\left(\frac{-110}{10}\right) \right]
\]

\[THD_{\text{dBc}} = -74.76 \text{ dB}\]
AC signals

Signal-to-noise and distortion (SINAD) and effective number of bits (ENOB)

\[
\text{SINAD (dB)} = 20 \log \left(\frac{\text{MaxRMSSignal}}{\sqrt{\text{RMSNoise}^2 + \text{RMDDistortion}^2}} \right)
\]

(193)

\[
\text{SINAD (dB)} = -20 \log \left(10^\left(\frac{-\text{SNR(dB)}}{10} \right) + 10^\left(\frac{-\text{THD(dB)}}{10} \right) \right)
\]

(194)

\[
\text{ENOB} = \frac{\text{SINAD (dB)} - 1.76 \text{dB}}{6.02}
\]

(195)

Where

MaxRMSSignal = the RMS equivalent of the ADC’s full-scale input
RMSNoise = the RMS noise integrated across the ADC converters
RMDDistortion = the RMS sum of all harmonic components
SINAD = the ratio of the full-scale signal-to-noise ratio and distortion
THD = Total Harmonic Distortion. The ratio of the RMS distortion to the RMS signal.
SNR = the ratio of RMS signal to RMS noise

Example

Calculate the SNR, THD, SINAD and ENOB given the following information:
MaxRMSSignal = 1.76 V_{RMS}
RMDDistortion = 50 \mu V_{RMS}
RMSNoise = 100 \mu V_{RMS}

Answer

\[
\text{SNR (dB)} = 20 \log \left(\frac{1.76 \text{ V}_{\text{RMS}}}{100 \text{ } \mu \text{V}_{\text{RMS}}} \right) = 84.9 \text{ dB}
\]

\[
\text{THD (dB)} = 20 \log \left(\frac{50 \text{ } \mu \text{V}_{\text{RMS}}}{1.76 \text{ V}_{\text{RMS}}} \right) = -90.9 \text{ dB}
\]

\[
\text{SINAD (dB)} = 20 \log \left(\frac{1.76 \text{ V}_{\text{RMS}}}{\sqrt{(100 \text{ } \mu \text{V}_{\text{RMS}})^2 + (50 \text{ } \mu \text{V}_{\text{RMS}})^2}} \right) = 83.9 \text{ dB}
\]

\[
\text{SINAD (dB)} = -20 \log \left(10^\left(\frac{-84.9 \text{ dB}}{10} \right) + 10^\left(\frac{-90.9 \text{ dB}}{10} \right) \right) = 83.9 \text{ dB}
\]

\[
\text{ENOB} = \frac{83.9 \text{ dB} - 1.76 \text{ dB}}{6.02} = 13.65
\]
DC signals

Noise free resolution and effective resolution

\[
\text{NoiseFreeResolution} = \log_2 \left(\frac{2^N}{\text{PeaktoPeakNoiseinLSB}} \right) \quad (196)
\]

\[
\text{EffectiveResolution} = \log_2 \left(\frac{2^N}{\text{rmsNoiseinLSB}} \right) \quad (197)
\]

\[
\text{PeaktoPeakNoiseinLSB} = 6.6 \times \text{rmsNoiseinLSB} \quad (198)
\]

\[
\text{EffectiveResolution} \approx \text{NoiseFreeResolution} + 2.7 \quad (199)
\]

Note: The maximum effective resolution is never greater than the ADC resolution. For example, a 24-bit converter cannot have an effective resolution greater than 24 bits.

Example

What is the noise-free resolution and effective resolution for a 24-bit converter assuming the peak-to-peak noise is 7 LSBs?

Answer

\[
\text{NoiseFreeResolution} = \log_2 \left(\frac{2^{24}}{7} \right) = 21.2
\]

\[
\text{EffectiveResolution} = \log_2 \left(\frac{2^{24}}{7} \right) = 23.9
\]

\[
\text{EffectiveResolution} = 21.2 + 2.7 = 23.9
\]
Settling time and conversion accuracy

![Diagram of RC circuit](image)

Figure 86: Settling time for RC circuit-related to ADC converters

Table 37: Conversion accuracy achieved after a specified time

<table>
<thead>
<tr>
<th>Settling time in time constants (N_{TC})</th>
<th>Accuracy in bits (N)</th>
<th>Settling time in time constants (N_{TC})</th>
<th>Accuracy in bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.44</td>
<td>10</td>
<td>14.43</td>
</tr>
<tr>
<td>2</td>
<td>2.89</td>
<td>11</td>
<td>15.87</td>
</tr>
<tr>
<td>3</td>
<td>4.33</td>
<td>12</td>
<td>17.31</td>
</tr>
<tr>
<td>4</td>
<td>5.77</td>
<td>13</td>
<td>18.76</td>
</tr>
<tr>
<td>5</td>
<td>7.21</td>
<td>14</td>
<td>20.20</td>
</tr>
<tr>
<td>6</td>
<td>8.66</td>
<td>15</td>
<td>21.64</td>
</tr>
<tr>
<td>7</td>
<td>10.10</td>
<td>16</td>
<td>23.08</td>
</tr>
<tr>
<td>8</td>
<td>11.54</td>
<td>17</td>
<td>24.53</td>
</tr>
<tr>
<td>9</td>
<td>12.98</td>
<td>18</td>
<td>25.97</td>
</tr>
</tbody>
</table>

\[N = \log_2(e^{-N_{TC}}) \] (200)

Where

- N = the number of bits of accuracy the RC circuit has settled to after N_{TC} number of time constants
- N_{TC} = the number of RC time constants. Where one time constant equals $R \cdot C$.

Note: For a FSR step. For single-ended input ADC with no PGA front end, FSR (full-scale range) = V_{REF}.
Settling time and conversion accuracy (cont.)

Table 38: Time required to settle to a specified conversion accuracy

<table>
<thead>
<tr>
<th>Accuracy in bits (N)</th>
<th>Settling time in time constants (NTC)</th>
<th>Accuracy in bits (N)</th>
<th>Settling time in time constants (NTD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5.5</td>
<td>17</td>
<td>11.78</td>
</tr>
<tr>
<td>9</td>
<td>6.24</td>
<td>18</td>
<td>12.48</td>
</tr>
<tr>
<td>10</td>
<td>6.93</td>
<td>19</td>
<td>13.17</td>
</tr>
<tr>
<td>11</td>
<td>7.62</td>
<td>20</td>
<td>13.86</td>
</tr>
<tr>
<td>12</td>
<td>8.32</td>
<td>21</td>
<td>14.56</td>
</tr>
<tr>
<td>13</td>
<td>9.01</td>
<td>22</td>
<td>15.25</td>
</tr>
<tr>
<td>14</td>
<td>9.70</td>
<td>23</td>
<td>15.94</td>
</tr>
<tr>
<td>15</td>
<td>10.40</td>
<td>24</td>
<td>16.64</td>
</tr>
<tr>
<td>16</td>
<td>11.04</td>
<td>25</td>
<td>17.33</td>
</tr>
</tbody>
</table>

NTC = ln(2^N) \hspace{1cm} (201)

Where

NTC = the number of time constants required to achieve N bits of settling. Where one time constant equals R·C.

N = the number of bits of accuracy

Note: For a FSR step. For single-ended input ADC with no PGA front end, FSR (full-scale rangee) = VREF.
ADC system noise calculation

\[V_{FSR_RMS} = \frac{V_{FSR} \cdot 0.707}{2} \]

(202) Full-scale RMS input

\[SNR_{ADC} = 20 \cdot \log \left(\frac{V_{FSR_RMS}}{V_{nADC}} \right) \]

(203) Solve for noise

\[V_{nADC} = \frac{V_{FSR_RMS}}{10^{\left(\frac{SNR_{ADC}}{20} \right)}} \]

(204) From ADC data sheet

\[V_{nT} = \sqrt{\left(V_{nADC} \right)^2 + \left(V_{nAmp} \right)^2 + \left(V_{nRef} \right)^2} \]

(205) Total RMS noise

Where

- \(V_{FSR} \) = the ADC full scale range from the data sheet
- \(V_{FSR_RMS} \) = this finds the maximum RMS amplitude of a sine wave applied to an ADC. Dividing the ADC full scale range by 2 converts peak-to-peak to peak. Multiplying by 0.707 converts to RMS.
- \(SNR_{ADC} \) = Data converter signal to noise ratio specification from data sheet
- \(V_{nADC} \) = noise in volts RMS derived from the SNR equation. Converting noise to volts allows it to be combined with amplifier and reference noise.
- \(V_{nAmp} \) = amplifier noise in volts RMS calculated or simulated using data sheet parameters
- \(V_{nRef} \) = reference noise in volts RMS calculated or simulated using data sheet parameters
- \(V_{nT} \) = total noise in volts RMS calculated by combining ADC, amplifier, and reference noise
Effect of clock jitter on ADC SNR

SNR vs jitter and input frequency

Figure 88: SNR vs jitter and input frequency

SNR = \(-20 \cdot \log\left(2 \cdot \pi \cdot f_{in} \cdot t_{jitter}\right)\) \hspace{1cm} (206) From ADC data sheet

SNR = \(-20 \cdot \log\left(2 \cdot \pi \cdot f_{in} \cdot t_{jitter}\right) + 10 \cdot \log(OSR)\) \hspace{1cm} (207) SNR limitation from jitter including oversampling

Where

- \(f_{in}\) = input frequency (Hz)
- \(t_{jitter}\) = ADC clock jitter time (seconds)
- OSR = oversampling ratio
Ideal Code
-0.5 LSB DNL

Ideal Code
-1.5 LSB DNL

Ideal Code
+0.5 LSB DNL

DAC errors
DAC non-linearity
DAC total unadjusted error
DAC definitions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution = n</td>
<td>The number of bits used to quantify the output</td>
</tr>
<tr>
<td>Number of codes = 2^n</td>
<td>The number of input code combinations</td>
</tr>
<tr>
<td>Full-scale range output = FSR</td>
<td>Sets the converter output range and the LSB voltage</td>
</tr>
<tr>
<td>LSB = FSR / 2^n</td>
<td>The voltage step size of each LSB</td>
</tr>
<tr>
<td>Full-scale output voltage = $(2^n - 1) \times 1$LSB</td>
<td>Full-scale output voltage of the DAC</td>
</tr>
<tr>
<td>Full-scale input code = $2^n - 1$</td>
<td>Largest code that can be written</td>
</tr>
<tr>
<td>Transfer function: $V_{OUT} = \text{number of codes} \times (\text{FSR}/2^n)$</td>
<td>Relationship between output voltage and input code</td>
</tr>
</tbody>
</table>

Figure 89: DAC transfer function
DAC offset error

Offset error is the y-axis intercept based on a two-point best fit measurement extrapolated to a zero input code. This is different from zero code error which is measured with Code = 0H and includes the nonlinear effects as the DAC output approaches zero volts.

\[
V_{\text{OUT}} = m_m \cdot \text{Code} + \text{Offset} \quad (208) \text{ General equation for best fit line}
\]

\[
m_m = \frac{V_{\text{OUT2}} - V_{\text{OUT1}}}{\text{Code}_2 - \text{Code}_1} \quad (209) \text{ Measured slope}
\]

\[
\text{Offset} = V_{\text{OUT1}} - m_m \cdot \text{Code}_1 \quad (210) \text{ Offset}
\]

Where

- \(V_{\text{OUT}}\) = DAC output voltage
- \(m_m\) = measured slope
- Code = input digital code
- Offset = the offset of a best fit line
DAC gain error

Gain error describes the deviation from the ideal slope of the DAC transfer function. Similar to offset error, this specification is measured at the DAC output using a two-point line of best fit, which is then compared against the ideal gain and expressed in a percentage.

![Figure 91: Gain error illustration](image)

Figure 91: Gain error illustration

\[V_{\text{OUT}} = m_m \cdot \text{Code} + \text{Offset} \] \hspace{1cm} (211) General equation for best fit line

\[m_m = \frac{V_{\text{OUT}2} - V_{\text{OUT}1}}{\text{Code}_2 - \text{Code}_1} \] \hspace{1cm} (212) Measured slope

\[GE = \left(\frac{m_m - m_{\text{ideal}}}{m_{\text{ideal}}} \right) \cdot 100 \] \hspace{1cm} (213) Gain error in percentage

Where

- \(V_{\text{OUT}} \) = DAC output voltage
- \(m_m \) = measured slope
- Code = input digital code
- Offset = the offset of a best fit line

Note: (Code_1, \(V_{\text{OUT}1} \)) and (Code_2, \(V_{\text{OUT}2} \)) are two data points on the measured transfer function. See Figure 90.
DAC zero-code error / negative full-scale error

Zero-code error (sometimes called negative full-scale error) is an end-point error measured when all 0's are loaded into the DAC data register. For a DAC with bipolar outputs, this may also be called negative full-scale error. The intention is to describe how close to the negative rail the DAC output can get when set to the minimal output value. Zero-code error is different from offset error in that it includes the potentially nonlinear output swing limitations, whereas the offset error is the offset of the best fit transfer function. The specified test conditions will indicate what, if any, negative supply was used to help assess the swing to ground capability at zero code.

![Graph illustrating zero-code error](image)

Figure 92: Zero-code error illustration
DAC Bipolar Zero Error

Bipolar zero error is a special datasheet parameter reserved for DACs with bipolar voltage or current outputs. It describes the DAC error when set to mid-scale, assuming a symmetrical output span, where the ideal DAC should be 0V or 0A. This specification is the mid-scale combination of both offset and gain errors. The specification is arrived at based on statistical analysis and, therefore, mathematically the summation of offset and gain errors may not match this value exactly.

![Bipolar zero error illustration](image)

Figure 93: Bipolar zero error illustration
DAC full-scale error

Full-scale error is an end-point error measured when all 1’s are loaded into the DAC data register. The intention is to describe how close to the positive rail the DAC output can get when set to the maximum output value. The specified test conditions will indicate what positive supply was used.

![Graph showing DAC full-scale error illustration](image-url)

Figure 94: Full-scale error illustration
DAC differential non-linearity

Differential non-linearity, or commonly abbreviated DNL, describes the actual measured step sizes versus ideal and is expressed in terms of least significant bits or LSBs. The electrical characteristics table of a DAC datasheet will only express a single minimum and maximum value, expressing the worst case observed across every code in the linear region of the DAC transfer function. When near the positive or negative rails, especially outside of the ranges defined by the high-code and low-code used to measure offset and gain errors, DNL performance will be degraded due to saturation near the rails. Most modern DACs are monotonic meaning that the output voltage will always increase as input codes increase. Figure 95 shows both monotonic and non-monotonic DNL.

![Figure 95: DNL error illustration](image-url)
DAC integral non-linearity

INL (Integral Non-Linearity) is sometimes referred to as relative accuracy. This is the deviation of the transfer function from an end point fit. While DNL describes the relationship of actual code step-sizes to ideal, INL expresses the cumulative effects of sequential DNL errors. INL is the maximum deviation from an end point fit straight line. This error source cannot be corrected using a simple two point fit calibration.

Figure 96: INL error illustration
DAC total unadjusted error

The equation below is for the total unadjusted error (or TUE). TUE is the statistical combinations of error sources in the linear region of operation for the DAC. In order to perform the above TUE calculation it is necessary to have each of the parametric error sources in the same units. Table 7 shows the calculations required to convert to different units (e.g. from percentage to parts per million).

\[
TUE = \sqrt{\text{OffsetError}^2 + \text{GainError}^2 + \text{INLError}^2}
\]

(214) Gain error in percentage

Where

OffsetError = the offset of a best fit line through the transfer function. See Figure 90.

GainError = the difference between the ideal slope and the measured slope. See Figure 91.

INLError = the maximum deviation from a best fit line through the transfer function. See Figure 96.
Multiplexer

- CMOS switch construction
- ON-resistance
- ON and OFF capacitance
- Leakage current
- Charge injection
- Bandwidth
- Channel-to-channel crosstalk
- OFF-isolation
- Total harmonic distortion plus noise
CMOS switch construction

Figure 97: Typical CMOS switch construction

Typical CMOS switch elements

- Parallel combination of N channel and P channel FET
- Control signal that controls the state of the switch
ON-resistance (R_{ON})

Resistance between sources to drain terminal when switch is closed

- PMOS conducts for positive input voltages
- NMOS conducts for negative input voltages
- Combined R_{ON} is lower than individual resistance of the NMOS or PMOS that form the switch

Varies with
- MUX input voltage
- Operating ambient temperature

Figure 98: Typical MUX ON-resistance curve vs input voltage
R\textsubscript{ON} flatness

Difference between maximum and minimum ON-resistance over a specified input range.

![Figure 99: R\textsubscript{ON} flatness illustration](image)

Effective op amp gain including MUX R\textsubscript{ON}

This section shows the impact of R\textsubscript{ON} flatness on gain error and non-linearity. Figure 99 shows the circuit and Figure 100 shows the measured results.

\[
AG = \frac{V_{\text{OUT}}}{V_{\text{IN}}} = \frac{-RF}{(R1 + R_{\text{ON}})}
\]

(215) Effective gain for op amp with MUX

![Figure 100: Front-end MUX followed by an inverting amplifier stage](image)
Effective op amp gain including MUX R_{ON} (cont.)

Design tips

- Use high impedance stage between MUX output and signal conditioning
- Use a multiplexer with lower R_{ON} (at the expense of other design trade-offs)

![Graphs showing On-resistance, Gain, and Non-linearity vs. Input voltage](image-url)
ON and OFF capacitance (C_{ON}/ C_{OFF})

- C_{OFF} = parasitic capacitance when the switch is OFF
 \[C_{OFF} = C_S \text{ (on source side)} \text{ or } C_D \text{ (on drain side)} \]
 (216)

- C_{ON} = parasitic capacitance when the switch is ON
 \[C_{ON} \approx C_S + C_D \]
 (217)

Design tips

Settling time = t_{TRANSITION} + (R_{ON} \cdot C_D \cdot K)

Where

- t_{TRANSITION} = MUX channel-to-channel transition time (refer to MUX specification)
- R_{ON} = switch ON-resistance between sources and drain
- C_D = switch drain parasitic capacitance
- K = number of time constants to settle to a N bit resolution ADC, K = \ln(2^N)
MUX settling time with C_{LOAD} and R_{LOAD}

![Simplified model for MUX settling time calculation](image)

Figure 103: Simplified model for MUX settling time calculation

Settling time = $t_{TRANSITION} + \frac{R_{ON} \cdot R_{LOAD}}{R_{ON} + R_{LOAD}} (C_{LOAD} + C_{D}) \cdot K$ (219)

Where

- $t_{TRANSITION}$ = MUX channel-to-channel transition time (refer to MUX specification)
- R_{ON} = switch ON-resistance between sources and drain
- R_{LOAD} = resistor connected to MUX output
- C_{LOAD} = capacitor connected to MUX output
- C_{D} = switch drain parasitic capacitance
- K = number of time constants to settle to a N bit resolution ADC, $K = \ln(2^N)$

Example

Determine the settling time of a MUX to 14-bit accuracy.

- $R_{ON}=125\,\Omega$; $C_{D(OFF)} = 7.5\,pF$
- $R_{LOAD}=1\,k\,\Omega$; $C_{LOAD}=5\,pF$
- $t_{TRANSITION}=92\,ns$

Answer

Settling time = $92\,ns + \frac{125 \cdot 1000}{125+1000} \cdot (5\,pF + 7.5\,pF) \cdot \ln(2^{14}) = 105.5\,ns$
Leakage current

Off leakage current

• $I_{S(OFF)}$ = input leakage current flows through R_{SOURCE}
• $I_{D(OFF)}$ = output leakage current flows through R_L

\[V_{ERROR(OUTPUT)} = R_L \cdot I_{D(OFF)} \] (220)

On leakage current

• $I_{D(ON)} = I_{LEAKAGE}$

\[V_{ERROR(OUTPUT)} = (R_{ON}+R_{SOURCE}) \cdot I_{D(ON)} \] (221)

Example

Determine the Switch = ON error caused by MUX leakage current in an 18-bits system:

Assume R_L is a very high input impedance ($R_L > 100\Omega$, i.e. an op amp input)

- $R_{SOURCE} = 1M\Omega$
- $R_{ON} = 100\Omega$
- $I_{D(ON)} = 100pA$
- $V_{REF} = 5V$

Answer

\[V_{LSB} = \frac{5V}{2^{18}} = 19.073\mu V \]

\[V_{ERROR} = I_{D(ON)} \cdot (R_{SOURCE} + R_{ON}) = (100pA) \cdot (1M\Omega + 100\Omega) = 100\mu V \]

\[\text{BIT}_\text{ERROR} = \frac{V_{ERROR}}{V_{LSB}} = \frac{100\mu V}{19.073\mu V} = 5.24 \text{ codes} \]
Charge injection (Q_{INJ})

Voltage change introduced at the output of switch when switch is turned ON or OFF

\[Q_{INJ} = (C_D + C_L) \cdot \Delta V_{OUT} \] \hspace{1cm} (222)

With large load capacitance, effect of \(C_D \) can be ignored

\[V_{ERROR} = \Delta V_{OUT} \approx \frac{Q_{INJ}}{C_L} \] \hspace{1cm} (223)

![Simplified model for MUX charge injection error](image)

Figure 105: Simplified model for MUX charge injection error

A typical multiplexer charge injection curve vs. input (source) voltage is shown below.

![Typical charge injection curve vs. source voltage](image)

Figure 106: Typical charge injection curve vs. source voltage
Bandwidth (BW)

The frequency at which the output is attenuated by 3 dB from the pass band (DC) response.

\[
\frac{V_{\text{OUT}}}{V_{\text{IN}}} = \left(\frac{R_L}{R_L + R_{\text{ON}}} \right) \cdot \left(\frac{1}{\frac{f}{f_{3\text{dB}}}} + 1\right)
\]

(224)

\[
f_{3\text{dB}} = \frac{1}{2\pi \left(\frac{R_L R_{\text{ON}}}{R_L + R_{\text{ON}}}\right)(C_D + C_L)}
\]

(225)

If \(R_L >> R_{\text{ON}}\):

\[
f_{3\text{dB}} = \frac{1}{2 \cdot \pi \cdot R_{\text{ON}} \cdot (C_D + C_L)}
\]

(226)

![Simplified multiplexer model](image)

Figure 107: Simplified model for MUX bandwidth calculation

A typical multiplexer bandwidth response vs. frequency is shown below. The device exhibits a -3dB bandwidth of approximately 2GHz.

![Typical bandwidth response vs. frequency curve](image)

Figure 108: Typical bandwidth response vs. frequency curve
Channel-to-channel crosstalk (X_{TALK})

Crosstalk is defined as the amount of signal read at the input of an OFF channel (V_{OUT}), when V_S is applied to an ON channel.

$$X_{TALK} = 20 \cdot \log \left(\frac{V_{OUT}}{V_S} \right)$$ \hspace{1cm} (227)

Where

$V_{OUT} =$ voltage measured at source pin of OFF channel

$V_S =$ voltage applied to source pin of ON channel

![Simplified model for MUX crosstalk calculation](image)

Figure 109: Simplified model for MUX crosstalk calculation

A typical multiplexer crosstalk vs. frequency is shown below for both adjacent and non-adjacent channels.

![Typical channel-to-channel crosstalk vs. frequency curve](image)

Figure 110: Typical channel-to-channel crosstalk vs. frequency curve
OFF-isolation

Voltage at output pin of a multiplexer when a known signal is applied at the source pin of an off-channel

\[
\text{OFF isolation} = 20 \cdot \log\left(\frac{V_{\text{OUT}}}{V_{\text{IN}}} \right)
\]

(228)

Where

\(V_{\text{OUT}} \) = voltage measured at source pin of OFF channel

\(V_{\text{IN}} \) = voltage applied at source pin of OFF channel

Figure 111: Simplified model for MUX OFF-isolation calculation

A typical multiplexer OFF-isolation vs. frequency is shown below for both adjacent and non-adjacent channels.

Figure 112: Typical OFF-isolation vs. frequency curve
Total harmonic distortion plus noise (THD+N)

- The ratio of the sum of all harmonic components and total RMS noise to the fundamental signal at the multiplexer output
- Highly dependent on the ON-resistance (R_{ON}) of the multiplexer

![Typical THD+ measurement setup](image)

Figure 113: Typical THD+ measurement setup

A typical multiplexer THD+N vs. frequency curve is shown below.

![Typical THD+N vs. frequency curve](image)

Figure 114: Typical THD+N vs. frequency curve

Design tips

- Use high impedance stage between MUX output and signal conditioning
- Use a multiplexer with lower R_{ON} (at the expense of other design trade-offs)
TI Worldwide Technical Support

TI Support
Thank you for your business. Find the answer to your support need or get in touch with our support center at www.ti.com/support
China: http://www.ti.com.cn/guidedsupport/cn/docs/supporthome.tsp
Japan: http://www.tij.co.jp/guidedsupport/jp/docs/supporthome.tsp

Technical support forums
Search through millions of technical questions and answers at TI’s E2E™ Community (engineer-to-engineer) at e2e.ti.com
China: http://www.deyisupport.com/
Japan: http://e2e.ti.com/group/jp/

TI Training
From technology fundamentals to advanced implementation, we offer on-demand and live training to help bring your next-generation designs to life. Get started now at training.ti.com
Japan: https://training.ti.com/jp

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

A011617

The platform bar and E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated